×

Stochastic resonance in a fractional oscillator with random mass and random frequency. (English) Zbl 1360.82069

Summary: For a fractional linear oscillator subjected to two multiplicative dichotomous noises and a additive fractional Gaussian noise and driven by a periodic signal, we study the stochastic resonance (SR) in this paper. Using (fractional) Shapiro-Loginov formula and the Laplace transformation technique, we acquire the exact expression of the first-order moment of the system’s steady response. Meanwhile, we discuss the evolutions of the output amplitude with frequency of the periodic signal, noise parameters, fractional order, and friction coefficient. We find that SR in the wide sense existing in this system. Specially, the evolution of the output amplitude with frequency of the periodic signal presents one-peak oscillation and two-peak oscillation. Moreover, the friction coefficient can induce stochastic multi-resonance.

MSC:

82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
44A10 Laplace transform
60H25 Random operators and equations (aspects of stochastic analysis)
Full Text: DOI

References:

[1] Benzi, R., Sutera, A., Vulpliani, A.: The mechanism of stochastic resonance. J. Phys. A 14, L453-457 (1981) · doi:10.1088/0305-4470/14/11/006
[2] Jia, Y., Yu, S.N., Li, J.R.: Stochastic resonance in a bistable system subject to multiplicative and additive noise. Phys. Rev. E 62, 1869 (2000) · doi:10.1103/PhysRevE.62.1869
[3] Gitterman, M.: Harmonic oscillator with multiplicative noise: nonmonotonic dependence on the strength and the rate of dichotomous noise. Phys. Rev. E 67, 057103 (2003) · doi:10.1103/PhysRevE.67.057103
[4] Luo, X.Q., Zhu, S.Q.: Stochastic resonance driven by two different kinds of colored noise in a bistable system. Phys. Rev. E 67, 021104 (2003) · doi:10.1103/PhysRevE.67.021104
[5] Katrin, L., Romi, M., Astrid, R.: Constructive influence of noise flatness and friction on the resonant behavior of a harmonic oscillator with fluctuating frequency. Phys. Rev. E 79, 051128 (2009) · doi:10.1103/PhysRevE.79.051128
[6] Li, D.S., Li, J.H.: Effect of correlation of two dichotomous noises on stochastic resonance. Commun. Theor. Phys. 53, 298 (2010) · Zbl 1221.60100 · doi:10.1088/0253-6102/53/2/18
[7] Gitterman, M.: Classical harmonic oscillator with multiplicative noise. Phys. A 352, 309-334 (2005) · doi:10.1016/j.physa.2005.01.008
[8] Jung, P., Hänggi, P.: Amplification of small signals via stochastic resonance. Phys. Rev. A 44, 8032-8042 (1991) · doi:10.1103/PhysRevA.44.8032
[9] Tian, Y., Huang, L., Luo, M.K.: Effects of time-periodic modulation of cross-correlation intensity between noise on stochastic resonance of over-damped linear system. Acta Phys. Sin. 62, 050502 (2013)
[10] Zhang, L., Zhong, S.C., Peng, H., Luo, M.K.: Stochastic resonance in an over-damped linear oscillator driven by multiplicative quadratic noise. Acta Phys. Sin. 61, 130503 (2012)
[11] Mankin, R., Rekker, A.: Memory-enhanced energetic stability for a fractional oscillator with fluctuating frequency. Phys. Rev. E 81, 041122 (2010) · doi:10.1103/PhysRevE.81.041122
[12] Zhong, S.C., Wei, K., Gao, S.L., Ma, H.: Stochastic resonance in a linear fractional Langevin equation. J. Stat. Phys. 150, 867-879 (2013) · Zbl 1266.82046 · doi:10.1007/s10955-012-0670-z
[13] Gitterman, M.: Harmonic oscillator with fluctuating damping parameter. Phys. Rev. E 69, 041101 (2004) · Zbl 1048.82003 · doi:10.1103/PhysRevE.69.041101
[14] Chomaz, J.M., Couairon, A.: Against the wind. Phys. Fluids 11, 2977-2983 (1999) · Zbl 1149.76343 · doi:10.1063/1.870157
[15] Kubo, R.: Stochastic Processes in Chemical Physics. Wiley, New York (1969)
[16] Gitterman, M., Shapiro, I.: Stochastic resonance in a harmonic oscillator with random mass subject to asymmetric dichotomous noise. J. Stat. Phys. 144, 139-149 (2011) · Zbl 1225.82047 · doi:10.1007/s10955-011-0240-9
[17] Gitterman, M.: New type of Brownian motion. J. Stat. Phys. 146, 239-243 (2012) · Zbl 1235.82053 · doi:10.1007/s10955-011-0398-1
[18] Gitterman, M.: Stochastic oscillator with random mass: New type of Brownian motion. Phys. A 395, 11-21 (2014) · Zbl 1395.82181 · doi:10.1016/j.physa.2013.10.020
[19] Yu, T., Zhang, L., Luo, M.K.: The resonance behavior of a linear harmonic oscillator with fluctuating mass. Acta Phys. Sin. 62, 120504 (2013)
[20] Zhong, S.C., Yu, T., Zhang, L., Ma, H.: Stochastic resonance of an underdamped linear harmonic oscillator with fluctuating mass and fluctuating frequency. Acta Phys. Sin. 64, 020202 (2014)
[21] Portman, J., Khasin, M., Shaw, S. W., Dykman, M. I.: The spectrum of an oscillator with fluctuating mass and nanomechanical mass sensing. APS, March Meeting March 15-19, 2010 Portland, USA, Abstract V14.00010 (2010)
[22] Bao, J.D., Zhuo, Y.Z.: Investigation on anomalous diffusion for nuclear fusion reactions. Phys. Rev. C 67, 064606 (2003) · doi:10.1103/PhysRevC.67.064606
[23] Goychuk, I.: Anomalous relaxation and dielectric response. Phys. Rev. E 76, 040102 (2007) · doi:10.1103/PhysRevE.76.040102
[24] Derec, C., Smerlak, M., Servais, J., Bacri, J.C.: Anomalous diffusion in microchannel under magnetic field. Phys. Procedia 9, 109-112 (2010) · doi:10.1016/j.phpro.2010.11.026
[25] Goychuk, I.: Subdiffusive Brownian ratchets rocked by a periodic force. Chem. Phys. 375, 450-457 (2010) · doi:10.1016/j.chemphys.2010.04.009
[26] Goychuk, I., Kharchenoko, V.: Fractional Brownian motors and stochastic resonance. Phys. Rev. E 85, 051131 (2012) · doi:10.1103/PhysRevE.85.051131
[27] Lin, L.F., Zhou, X.W., Ma, H.: Subdiffusive transport of fractional two-headed molecular motor. Acta Phys. Sin. 62, 240501 (2013) · Zbl 1289.37017
[28] Narahari Achar, B.N., Hanneken, J.W., Enck, T., Clarke, T.: Dynamics of the fractional oscillator. Phys. A 297, 361-367 (2001) · Zbl 0969.70511 · doi:10.1016/S0378-4371(01)00200-X
[29] Ryabov Ya, E., Puzenko, A.: Damped oscillations in view of the fractional oscillator equation. Phys. Rev. E 66, 184201 (2002) · doi:10.1103/PhysRevB.66.184201
[30] Shen, Y., Wei, P., Sui, C., Yang, S.: Subharmonic resonance of van der Pol oscillator with fractional-order derivative. Math. Probl. Eng. 2014, 738087 (2014) · Zbl 1407.34051
[31] He, G.T., Tian, Y., Wang, Y.: Stochastic resonance in a fractional oscillator with random damping strength and random spring stiffness. J. Stat. Mech. 2013, P09026 (2013) · Zbl 1456.70041 · doi:10.1088/1742-5468/2013/09/P09026
[32] Mankin, R., Laas, K., Lumi, N.: Memory effects for a trapped Brownian particle in viscoelastic shear flows. Phys. Rev. E 88, 042142 (2013) · doi:10.1103/PhysRevE.88.042142
[33] Laas, K., Mankin, R.: Resonance behavior of a fractional oscillator with random damping. AIP Conf. Proc. 1404, 131-138 (2011) · doi:10.1063/1.3659912
[34] Sauga, A., Mankin, R., Ainsaar, A.: Resonance behavior of a fractional oscillator with fluctuating mass. AIP Conf. Proc. 1487, 224-232 (2012) · doi:10.1063/1.4758962
[35] Yu, T., Luo, M.K., Hua, Y.: The resonance behavior of fractional harmonic oscillator with fluctuating mass. Acta Phys. Sin. 62, 210503 (2013)
[36] Gemant, A.: A method of analyzing experimental results obtained from elasto-viscous bodies. Physics 7, 311-317 (1936) · doi:10.1063/1.1745400
[37] Gao, S.L., Zhong, S.C., Wei, K., Ma, H.: Overdamped fractional Langevin equation and its stochastic resonance. Acta Phys. Sin. 61, 100502 (2012)
[38] Zhang, J.Q., Xin, H.W.: Research of the behavior induced by noise in nonlinear chemical systems. Prog. Chem.y 13, 241-250 (2001)
[39] Kubo, R.: The fluctuation-dissipation theorem. Rep. Prog. Phys. 29, 255-284 (1966) · Zbl 0163.23102 · doi:10.1088/0034-4885/29/1/306
[40] Bao, J.D.: Introduction to Anomalous Statistical Dynamics. Science Press, Beijing (2012)
[41] Kou, S.C., Xie, X.S.: Generalized Langevin equation with fractional Gaussian noise: subdiffusion within a single protein molecule. Phys. Rev. Lett. 93, 180603 (2004) · doi:10.1103/PhysRevLett.93.180603
[42] Shapiro, V.E., Loginov, V.M.: “Formulae of differentiation” and their use for solving stochastic equations. Phys. A 91, 563-574 (1978) · doi:10.1016/0378-4371(78)90198-X
[43] Oppenheim, A.V., Willsky, A.S., Nawab, S.H.: Singals and Systems. Prentice Hall, Xian (2012) · Zbl 0163.23102
[44] Vilar, J.M.G., Rubi, J.M.: Stochastic multiresonance. Phys. Rev. Lett. 78, 2882 (1997) · doi:10.1103/PhysRevLett.78.2882
[45] Burada, P.S., Schmid, G., Reguera, D., Rubi, J.M., Hänggi, P.: Double entropic stochastic resonance. Europhys. Lett. 87, 50003 (2009) · doi:10.1209/0295-5075/87/50003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.