×

Convergence of time-inhomogeneous geodesic random walks and its application to coupling methods. (English) Zbl 1266.60060

The author constructs the coupling by reflection via an approximation of diffusion processes by time-inhomogeneous geodesic random walks. The author assumes that the metric is a natural time-inhomogeneous extension of lower bounds of the Ricci curvature. An estimate of the coupling time is presented.

MSC:

60F17 Functional limit theorems; invariance principles
53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
58J65 Diffusion processes and stochastic analysis on manifolds
58J35 Heat and other parabolic equation methods for PDEs on manifolds
53C44 Geometric evolution equations (mean curvature flow, Ricci flow, etc.) (MSC2010)

References:

[1] Arnaudon, M., Coulibaly, K. A. and Thalmaier, A. (2010). Horizontal diffusion in \(C^{1}\)-path space. In Séminaire de Probabilités XLIII. Lecture Notes in Math. 2006 73-94. Springer, Berlin. · Zbl 1222.58029
[2] Bakry, D. (1997). On Sobolev and logarithmic Sobolev inequalities for Markov semigroups. In New Trends in Stochastic Analysis ( Charingworth , 1994) 43-75. World Scientific, River Edge, NJ.
[3] Bakry, D. and Ledoux, M. (1996). Sobolev inequalities and Myers’s diameter theorem for an abstract Markov generator. Duke Math. J. 85 253-270. · Zbl 0870.60071 · doi:10.1215/S0012-7094-96-08511-7
[4] Bakry, D. and Qian, Z. (2005). Volume comparison theorems without Jacobi fields. In Current Trends in Potential Theory. Theta Ser. Adv. Math. 4 115-122. Theta, Bucharest. · Zbl 1212.58019
[5] Billingsley, P. (1999). Convergence of Probability Measures , 2nd ed. Wiley, New York. · Zbl 0944.60003
[6] Blum, G. (1984). A note on the central limit theorem for geodesic random walks. Bull. Aust. Math. Soc. 30 169-173. · Zbl 0561.60071 · doi:10.1017/S0004972700001878
[7] Chavel, I. (1993). Riemannian Geometry-a Modern Introduction. Cambridge Tracts in Mathematics 108 . Cambridge Univ. Press, Cambridge. · Zbl 0810.53001
[8] Coulibaly-Pasquier, K. A. (2011). Brownian motion with respect to time-changing Riemannian metrics, applications to Ricci flow. Ann. Inst. Henri Poincaré Probab. Stat. To appear. Available at . 0901.1999 · Zbl 1222.58030 · doi:10.1214/10-AIHP364
[9] Cranston, M. (1991). Gradient estimates on manifolds using coupling. J. Funct. Anal. 99 110-124. · Zbl 0770.58038 · doi:10.1016/0022-1236(91)90054-9
[10] Ethier, S. N. and Kurtz, T. G. (1986). Markov Processes : Characterization and Convergence . Wiley, New York. · Zbl 0592.60049
[11] Freedman, D. A. (1975). On tail probabilities for martingales. Ann. Probab. 3 100-118. · Zbl 0313.60037 · doi:10.1214/aop/1176996452
[12] Hsu, E. P. (2002). Stochastic Analysis on Manifolds. Graduate Studies in Mathematics 38 . Amer. Math. Soc., Providence, RI. · Zbl 0994.58019
[13] Ikeda, N. and Watanabe, S. (1989). Stochastic Differential Equations and Diffusion Processes , 2nd ed. North-Holland Mathematical Library 24 . North-Holland, Amsterdam. · Zbl 0684.60040
[14] Jørgensen, E. (1975). The central limit problem for geodesic random walks. Z. Wahrsch. Verw. Gebiete 32 1-64. · Zbl 0292.60103 · doi:10.1007/BF00533088
[15] Kendall, W. S. (1998). From stochastic parallel transport to harmonic maps. In New Directions in Dirichlet Forms. AMS/IP Studies in Advanced Mathematics 8 49-115. Amer. Math. Soc., Providence, RI. · Zbl 0924.58110
[16] Kuwada, K. (2010). Couplings of the Brownian motion via discrete approximation under lower Ricci curvature bounds. In Probabilistic Approach to Geometry. Advanced Studies in Pure Mathematics 57 273-292. Math. Soc. Japan, Tokyo. · Zbl 1204.58031
[17] Kuwada, K. and Philipowski, R. (2011). Non-explosion of diffusion processes on manifolds with time-dependent metric. Math. Z. To appear. Available at . 0910.1730 · Zbl 1226.53039 · doi:10.1007/s00209-010-0704-7
[18] Kuwada, K. and Philipowski, R. (2011). Coupling of Brownian motion and Perelman’s \(\mathcal{L}\)-functional. J. Funct. Anal. 260 2742-2766. · Zbl 1219.53067 · doi:10.1016/j.jfa.2011.01.017
[19] McCann, R. J. and Topping, P. M. (2010). Ricci flow, entropy and optimal transportation. Amer. J. Math. 132 711-730. · Zbl 1203.53065 · doi:10.1353/ajm.0.0110
[20] Oshima, Y. (2004). Time-dependent Dirichlet forms and related stochastic calculus. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 7 281-316. · Zbl 1078.60060 · doi:10.1142/S021902570400158X
[21] Philipowski, R. (2009). Coupling of diffusions on manifolds with time-dependent metric. Seminar talk at Universtität Bonn.
[22] Pinsky, M. A. (1976). Isotropic transport process on a Riemannian manifold. Trans. Amer. Math. Soc. 218 353-360. · Zbl 0341.60041 · doi:10.2307/1997446
[23] Qian, Z. (1997). Estimates for weighted volumes and applications. Quart. J. Math. Oxford Ser. (2) 48 235-242. · Zbl 0902.53032 · doi:10.1093/qjmath/48.190.235
[24] Stannat, W. (1999). The theory of generalized Dirichlet forms and its applications in analysis and stochastics. Mem. Amer. Math. Soc. 142 viii+101. · Zbl 1230.60006
[25] Stroock, D. W. and Varadhan, S. R. S. (1979). Multidimensional Diffusion Processes. Grundlehren der Mathematischen Wissenschaften [ Fundamental Principles of Mathematical Sciences ] 233 . Springer, Berlin. · Zbl 0426.60069
[26] Topping, P. (2009). \(\mathcal{L}\)-optimal transportation for Ricci flow. J. Reine Angew. Math. 636 93-122. · Zbl 1187.53072 · doi:10.1515/CRELLE.2009.083
[27] von Renesse, M.-K. (2004). Intrinsic coupling on Riemannian manifolds and polyhedra. Electron. J. Probab. 9 411-435 (electronic). · Zbl 1070.60073 · doi:10.1214/EJP.v9-205
[28] Wang, F. Y. (1994). Successful couplings of nondegenerate diffusion processes on compact manifolds. Acta Math. Sinica 37 116-121. · Zbl 0790.58045
[29] Wang, F.-Y. (1997). On estimation of the logarithmic Sobolev constant and gradient estimates of heat semigroups. Probab. Theory Related Fields 108 87-101. · Zbl 0874.58092 · doi:10.1007/s004400050102
[30] Wang, F. Y. (2005). Functional Inequalities , Markov Semigroups , and Spectral Theory. Mathematics Monograph Series 4 . Science Press, Beijing, China.
[31] Willett, D. and Wong, J. S. W. (1965). On the discrete analogues of some generalizations of Gronwall’s inequality. Monatsh. Math. 69 362-367. · Zbl 0145.06003 · doi:10.1007/BF01297622
[32] Zhang, Q. S. (2011). Sobolev Inequalities , Heat Kernels Under Ricci Flow , and the Poincaré Conjecture . CRC Press, Boca Raton, FL. · Zbl 1208.58032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.