×

Brownian motion with respect to time-changing Riemannian metrics, applications to Ricci flow. (English. French summary) Zbl 1222.58030

The purpose of the author is the study of Brownian motion \((X_t)\) on a Riemannian manifold \(M\) whose metric \(g(t)\) is also evolving in time (deterministically). Precisely, \((X_t)\) is the unique solution to the martingale problem associated with the Laplace-Beltrami operator \(\Delta(t)\) arising from \(g(t)\). Its density satisfies a perturbed heat equation, in which \(g'(t)\) appears.
Then the author introduces, for fixed \(T> 0\), the reversed Brownian motion \((X^T_t)\) associated to \(g(T- t)\), and an associated damped parallel transport \((W^T_t)\), which is an isometry enjoying the following property: if \(g(t)\) is a Ricci flow, then \((W^T_t)\) coincides with the usual parallel transport.
If \(f\) satisfies the perturbed heat equation, then \(df(T- t_j)_{X^T}(W^T_t)\) is a local martingale. A Bismut formula is deduced from that fact, and then gradient estimates follows.
Maybe the main result is the following stochastic characterization: \(g(t)\) is a Ricci flow if and only if the parallel transport is given by the differential \(T_x X^T_t(x)\) of the Brownian flow \(X^T_t(x)\).
Finally some intrinsic \(TM\)-valued martingale is brought out, namely \((//^T_t)^{-1}\text{Tr\,}\nabla T\,X^T_t(x)\), arising from the Hessian of the Brownian flow and having quadratic variation \[ \|\text{Ricci}_{T-t}(X^T_t(x))\|^2_{g(T- t)}. \]

MSC:

58J65 Diffusion processes and stochastic analysis on manifolds
60H07 Stochastic calculus of variations and the Malliavin calculus
58J35 Heat and other parabolic equation methods for PDEs on manifolds
53C44 Geometric evolution equations (mean curvature flow, Ricci flow, etc.) (MSC2010)

References:

[1] M. Arnaudon and A. Thalmaier. Complete lifts of connections and stochastic Jacobi fields. J. Math. Pures Appl. (9) 77 (1998) 283-315. · Zbl 0916.58045 · doi:10.1016/S0021-7824(98)80071-8
[2] M. Arnaudon and A. Thalmaier. Stability of stochastic differential equations in manifolds. In Séminaire de Probabilités, XXXII 188-214. Lecture Notes in Math. 1686 . Springer, Berlin, 1998. · Zbl 0918.60040
[3] M. Arnaudon and A. Thalmaier. Horizontal martingales in vector bundles. In Séminaire de Probabilités, XXXVI 419-456. Lecture Notes in Math. 1801 . Springer, Berlin, 2003. · Zbl 1046.58013
[4] M. Arnaudon, R. O. Bauer and A. Thalmaier. A probabilistic approach to the Yang-Mills heat equation. J. Math. Pures Appl. (9) 81 (2002) 143-166. · Zbl 1042.58021 · doi:10.1016/S0021-7824(02)01254-0
[5] B. Chow and D. Knopf. The Ricci Flow: An Introduction. Mathematical Surveys and Monographs 110 . Amer. Math. Soc., Providence, RI, 2004. · Zbl 1086.53085
[6] M. Cranston. Gradient estimates on manifolds using coupling. J. Funct. Anal. 99 (1991) 110-124. · Zbl 0770.58038 · doi:10.1016/0022-1236(91)90054-9
[7] D. M. DeTurck. Deforming metrics in the direction of their Ricci tensors. J. Differential Geom. 18 (1983) 157-162. · Zbl 0517.53044
[8] K. D. Elworthy and X.-M. Li. Formulae for the derivatives of heat semigroups. J. Funct. Anal. 125 (1994) 252-286. · Zbl 0813.60049 · doi:10.1006/jfan.1994.1124
[9] K. D. Elworthy and M. Yor. Conditional expectations for derivatives of certain stochastic flows. In Séminaire de Probabilités, XXVII 159-172. Lecture Notes in Math. 1557 . Springer, Berlin, 1993. · Zbl 0795.60046
[10] K. D. Elworthy, Y. Le Jan and X.-M. Li. On the Geometry of Diffusion Operators and Stochastic Flows. Lecture Notes in Math. 1720 . Springer, Berlin, 1999. · Zbl 0942.58004 · doi:10.1007/BFb0103064
[11] M. Emery. Une topologie sur l’espace des semimartingales. In Séminaire de Probabilités, XIII (Univ. Strasbourg, Strasbourg, 1977/78) 260-280. Lecture Notes in Math. 721 . Springer, Berlin, 1979. · Zbl 0406.60057
[12] M. Émery. Stochastic Calculus in Manifolds: With an Appendix by P.-A. Meyer . Springer, Berlin, 1989. · Zbl 0697.60060
[13] M. Émery. On two transfer principles in stochastic differential geometry. In Séminaire de Probabilités, XXIV, 1988/89 407-441. Lecture Notes in Math. 1426 . Springer, Berlin, 1990. · Zbl 0704.60066
[14] R. S. Hamilton. Three-manifolds with positive Ricci curvature. J. Differential Geom. 17 (1982) 255-306. · Zbl 0504.53034
[15] E. P. Hsu. Stochastic Analysis on Manifolds Graduate Studies in Mathematics 38 . Amer. Math. Soc., Providence, RI, 2002. · Zbl 0994.58019
[16] J. Jost. Harmonic Mappings between Riemannian Manifolds. Proceedings of the Centre for Mathematical Analysis, Australian National University 4 . Australian National University Centre for Mathematical Analysis, Canberra, 1984. · Zbl 0542.58001
[17] J. Jost. Riemannian Geometry and Geometric Analysis , 4th edition. Springer, Berlin, 2005. · Zbl 1083.53001
[18] W. S. Kendall. Nonnegative Ricci curvature and the Brownian coupling property. Stochastics 19 (1986) 111-129. · Zbl 0584.58045 · doi:10.1080/17442508608833419
[19] S. Kobayashi and K. Nomizu. Foundations of Differential Geometry. Vol. I. Wiley Classics Library . Wiley, New York, 1996. Reprint of the 1963 original, Wiley. · Zbl 0119.37502
[20] H. Kunita. Stochastic Flows and Stochastic Differential Equations. Cambridge Studies in Advanced Mathematics 24 . Cambridge Univ. Press, Cambridge, 1990. · Zbl 0743.60052
[21] J. M. Lee. Riemannian Manifolds: An Introduction to Curvature. Graduate Texts in Mathematics 176 . Springer, New York, 1997. · Zbl 0905.53001
[22] D. W. Stroock and S. R. Srinivasa Varadhan. Multidimensional Diffusion Processes. Classics in Mathematics . Springer, Berlin, 2006. Reprint of the 1997 edition. · Zbl 1103.60005
[23] A. Thalmaier and F.-Y. Wang. Gradient estimates for harmonic functions on regular domains in Riemannian manifolds. J. Funct. Anal. 155 (1998) 109-124. · Zbl 0914.58042 · doi:10.1006/jfan.1997.3220
[24] P. Topping. Lectures on the Ricci Flow. London Mathematical Society Lecture Note Series 325 . Cambridge Univ. Press, Cambridge, 2006. · Zbl 1105.58013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.