×

The reciprocal theorem in fluid dynamics and transport phenomena. (English) Zbl 1430.76129

Summary: In the study of fluid dynamics and transport phenomena, key quantities of interest are often the force and torque on objects and total rate of heat/mass transfer from them. Conventionally, these integrated quantities are determined by first solving the governing equations for the detailed distribution of the field variables (i.e. velocity, pressure, temperature, concentration, etc.) and then integrating the variables or their derivatives on the surface of the objects. On the other hand, the divergence form of the conservation equations opens the door for establishing integral identities that can be used for directly calculating the integrated quantities without requiring the detailed knowledge of the distribution of the primary variables. This shortcut approach constitutes the idea of the reciprocal theorem, whose closest relative is Green’s second identity, which readers may recall from studies of partial differential equations. Despite its importance and practicality, the theorem may not be so familiar to many in the research community. Ironically, some believe that the extreme simplicity and generality of the theorem are responsible for suppressing its application! In this Perspectives piece, we provide a pedagogical introduction to the concept and application of the reciprocal theorem, with the hope of facilitating its use. Specifically, a brief history on the development of the theorem is given as a background, followed by the discussion of the main ideas in the context of elementary boundary-value problems. After that, we demonstrate how the reciprocal theorem can be utilized to solve fundamental problems in low-Reynolds-number hydrodynamics, aerodynamics, acoustics and heat/mass transfer, including convection. Throughout the article, we strive to make the materials accessible to early career researchers while keeping it interesting for more experienced scientists and engineers.

MSC:

76D07 Stokes and related (Oseen, etc.) flows
76T20 Suspensions
76D05 Navier-Stokes equations for incompressible viscous fluids
Full Text: DOI

References:

[1] Achenbach, J. D.2002Use of elastodynamic reciprocity theorems for field calculations. In Integral Methods in Science and Engineering (ed. P.Schiavone, C.Constanda & A.Mioduchowski), pp. 1-14. Birkhäuser. · Zbl 1104.74313
[2] Achenbach, J. D.2003Reciprocity in Elastodynamics. Cambridge University Press. · Zbl 1060.74002
[3] Achenbach, J. D.2014A new use of the elastodynamic reciprocity theorem. Math. Mech. Solids19 (1), 5-18. · Zbl 07278974
[4] Acree, W. E.1984Empirical expression for predicting surface-tension of liquid-mixtures. J. Colloid Interface Sci.101, 575-576.
[5] Acrivos, A.2015Reflections on a rheologist: Howard Brenner (1929-2014). Rheol. Bull.84 (1), 8-11.
[6] Acrivos, A. & Taylor, T. D.1962Heat and mass transfer from single spheres in Stokes flow. Phys. Fluids5 (4), 387-394. · Zbl 0109.18605
[7] Adamson, A. W. & Gast, A. P.1997Physical Chemistry of Surfaces. Wiley.
[8] Ajdari, A. & Stone, H. A.1999A note on swimming using internally generated traveling waves. Phys. Fluids11 (5), 1275-1277. · Zbl 1147.76303
[9] Anderson, J. L.1989Colloid transport by interfacial forces. Annu. Rev. Fluid Mech.21 (1), 61-99. · Zbl 0662.76127
[10] Barber, J. R.2002Elasticity. Springer.
[11] Batchelor, G. K.1970The stress system in a suspension of force-free particles. J. Fluid Mech.41 (3), 545-570. · Zbl 0193.25702
[12] Becker, L. E., McKinley, G. H. & Stone, H. A.1996Sedimentation of a sphere near a plane wall: weak non-Newtonian and inertial effects. J. Non-Newtonian Fluid Mech.63 (2), 201-233.
[13] Bell, C. G., Byrne, H. M., Whiteley, J. P. & Waters, S. L.2014Heat or mass transfer at low Péclet number for Brinkman and Darcy flow round a sphere. Intl J. Heat Mass Transfer68, 247-258.
[14] Betti, E.1872Teoria della elasticità. Il Nuovo Cimento7 (1), 69-97.
[15] Brady, J. F.2011Particle motion driven by solute gradients with application to autonomous motion: continuum and colloidal perspectives. J. Fluid Mech.667, 216-259. · Zbl 1225.76288
[16] Brady, J. F. & Bossis, G.1988Stokesian dynamics. Annu. Rev. Fluid Mech.20 (1), 111-157.
[17] Brenner, H.1958Dissipation of energy due to solid particles suspended in a viscous liquid. Phys. Fluids1 (4), 338-346. · Zbl 0082.39602
[18] Brenner, H.1961The Oseen resistance of a particle of arbitrary shape. J. Fluid Mech.11 (4), 604-610. · Zbl 0102.19803
[19] Brenner, H.1962Effect of finite boundaries on the Stokes resistance of an arbitrary particle. J. Fluid Mech.12 (1), 35-48. · Zbl 0102.19804
[20] Brenner, H.1963aForced convection heat and mass transfer at small Péclet numbers from a particle of arbitrary shape. Chem. Engng Sci.18 (2), 109-122.
[21] Brenner, H.1963bThe Stokes resistance of an arbitrary particle. Chem. Engng Sci.18 (1), 1-25.
[22] Brenner, H.1964aThe Stokes resistance of a slightly deformed sphere. Chem. Engng Sci.19 (8), 519-539.
[23] Brenner, H.1964bThe Stokes resistance of an arbitrary particle. IV: Arbitrary fields of flow. Chem. Engng Sci.19 (10), 703-727.
[24] Brenner, H.1967On the invariance of the heat-transfer coefficient to flow reversal in Stokes and potential streaming flows past particles of arbitrary shape. J. Math. Phys. Sci.1, 173-179. · Zbl 0204.27402
[25] Brenner, H.1970aInvariance of the overall mass transfer coefficient to flow reversal during Stokes flow past one or more particles of arbitrary shape. Chem. Engng Prog. Symp. Ser.66, 123-126.
[26] Brenner, H.1970bPressure drop due to the motion of neutrally buoyant particles in duct flows. J. Fluid Mech.43 (4), 641-660. · Zbl 0269.76069
[27] Brenner, H.1971Pressure drop due to the motion of neutrally buoyant particles in duct flows. II. Spherical droplets and bubbles. Ind. Engng Chem. Fundam.10 (4), 537-543.
[28] Brenner, H. & Cox, R. G.1963The resistance to a particle of arbitrary shape in translational motion at small Reynolds numbers. J. Fluid Mech.17 (4), 561-595. · Zbl 0116.18003
[29] Brenner, H. & Haber, S.1984Symbolic operator solutions of Laplace’s and Stokes’ equations Part 1. Laplace’s equation. Chem. Engng Commun.27 (5-6), 283-295.
[30] Brenner, H. & Nadim, A.1996The Lorentz reciprocal theorem for micropolar fluids. In The Centenary of a Paper on Slow Viscous Flow by the Physicist H. A. Lorentz, pp. 169-176. Springer. · Zbl 0881.76004
[31] Brinkman, H. C.1947A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. A1, 27-34. · Zbl 0041.54204
[32] Brinkman, H. C.1948On the permeability of media consisting of closely packed porous particles. Appl. Sci. Res. A1, 81-86.
[33] Brunet, E. & Ajdari, A.2004Generalized Onsager relations for electrokinetic effects in anisotropic and heterogeneous geometries. Phys. Rev. E69 (1), 016306.
[34] Brunn, P.1976aThe behavior of a sphere in non-homogeneous flows of a viscoelastic fluid. Rheol. Acta15 (11-12), 589-611. · Zbl 0353.76012
[35] Brunn, P.1976bThe slow motion of a sphere in a second-order fluid. Rheol. Acta15 (3-4), 163-171. · Zbl 0336.76003
[36] Brunn, P.1980The motion of rigid particles in viscoelastic fluids. J. Non-Newtonian Fluid Mech.7 (4), 271-288. · Zbl 0465.76006
[37] Bungay, P. M. & Brenner, H.1973Pressure drop due to the motion of a sphere near the wall bounding a Poiseuille flow. J. Fluid Mech.60 (1), 81-96. · Zbl 0273.76019
[38] Candelier, F., Einarsson, J. & Mehlig, B.2016Angular dynamics of a small particle in turbulence. Phys. Rev. Lett.117 (20), 204501. · Zbl 1462.76194
[39] Carrier, G. F.1953 On slow viscous flow. Tech. Rep. Final Report, Office of Naval Research Contract Nonr-653 (00).
[40] Caswell, B.1972The stability of particle motion near a wall in Newtonian and non-Newtonian fluids. Chem. Engng Sci.27 (2), 373-389.
[41] Chan, P. C.-H. & Leal, L. G.1979The motion of a deformable drop in a second-order fluid. J. Fluid Mech.92 (1), 131-170. · Zbl 0402.76007
[42] Charlton, T. M.1960A historical note on the reciprocal theorem and theory of statically indeterminate frameworks. Nature187 (4733), 231.
[43] Clebsch, R. F. A.1862Theorie der Elasticität fester Körper. B. G. Teubner.
[44] Cox, R. G. & Brenner, H.1968The lateral migration of solid particles in Poiseuille flow - I theory. Chem. Engng Sci.23 (2), 147-173.
[45] Crowdy, D. G.2013Wall effects on self-diffusiophoretic Janus particles: a theoretical study. J. Fluid Mech.735, 473-498. · Zbl 1294.76229
[46] Davis, A. M. J.1990Stokes drag on a disk sedimenting toward a plane or with other disks; additional effects of a side wall or free-surface. Phys. Fluids2, 301-312. · Zbl 0704.76018
[47] Day, R. F. & Stone, H. A.2000Lubrication analysis and boundary integral simulations of a viscous micropump. J. Fluid Mech.416, 197-216. · Zbl 0963.76024
[48] De Hoop, A. T.1995Handbook of Radiation and Scattering of Waves. Academic Press.
[49] Debye, P. & Bueche, A. M.1948Intrinsic viscosity, diffusion, and sedimentation rate of polymers in solution. J. Chem. Phys.16, 573-579.
[50] Dörr, A., Hardt, S., Masoud, H. & Stone, H. A.2016Drag and diffusion coefficients of a spherical particle attached to a fluid-fluid interface. J. Fluid Mech.790, 607-618. · Zbl 1382.76270
[51] Durlofsky, L. & Brady, J. F.1987Analysis of the Brinkman equation as a model for flow in porous media. Phys. Fluids30, 3329-3341. · Zbl 0636.76098
[52] Elfring, G. J. & Lauga, E.2015Theory of locomotion through complex fluids. In Complex Fluids in Biological Systems (ed. S. E.Spagnolie), chap. 8, pp. 283-317. Springer.
[53] Elfring, G. J.2015A note on the reciprocal theorem for the swimming of simple bodies. Phys. Fluids27 (2), 023101.
[54] Elfring, G. J.2017Force moments of an active particle in a complex fluid. J. Fluid Mech.829, R3. · Zbl 1460.76832
[55] Elfring, G. J. & Goyal, G.2016The effect of gait on swimming in viscoelastic fluids. J. Non-Newtonian Fluid Mech.234, 8-14.
[56] Elfring, G. J., Leal, L. G. & Squires, T. M.2016Surface viscosity and Marangoni stresses at surfactant laden interfaces. J. Fluid Mech.792, 712-739. · Zbl 1381.76024
[57] Eversman, W.2001A reverse flow theorem and acoustic reciprocity in compressible potential flows in ducts. J. Sound Vib.246 (1), 71-95.
[58] Fair, M. C. & Anderson, J. L.1989Electrophoresis of nonuniformly charged ellipsoidal particles. J. Colloid Interface Sci.127 (2), 388-400.
[59] Felderhof, B. U.1983Reciprocity in electrohydrodynamics. Physica A122 (3), 383-396.
[60] Felderhof, B. U. & Jones, R. B.1994aInertial effects in small-amplitude swimming of a finite body. Physica A202 (1), 94-118.
[61] Felderhof, B. U. & Jones, R. B.1994bSmall-amplitude swimming of a sphere. Physica A202 (1), 119-144.
[62] Flax, A. H.1953Reverse flow and variational theorems for lifting surfaces in non-stationary compressible flow. J. Aero. Sci.20 (2), 120-126. · Zbl 0050.20101
[63] Fleury, R., Sounas, D., Haberman, M. R. & Alù, A.2015Nonreciprocal acoustics. Acoust. Today11 (3), 14-21.
[64] Ford, M. L. & Nadim, A.1994Thermocapillary migration of an attached drop on a solid surface. Phys. Fluids6 (9), 3183-3185. · Zbl 0825.76149
[65] Ganatos, P., Pfeffer, R. & Weinbaum, S.1980aA strong interaction theory for the creeping motion of a sphere between plane parallel boundaries. Part 2. Parallel motion. J. Fluid Mech.99 (4), 755-783. · Zbl 0447.76019
[66] Ganatos, P., Weinbaum, S. & Pfeffer, R.1980bA strong interaction theory for the creeping motion of a sphere between plane parallel boundaries. Part 1. Perpendicular motion. J. Fluid Mech.99 (4), 739-753. · Zbl 0447.76018
[67] Godin, O. A.1997aReciprocity and energy theorems for waves in a compressible inhomogeneous moving fluid. Wave Motion25 (2), 143-167. · Zbl 0930.76080
[68] Godin, O. A.1997bReciprocity relations and energy conservation for waves in the system: inhomogeneous fluid flow-anisotropic solid body. Acoust. Phys.43, 688-693.
[69] Goldstein, R. E.2011Evolution of biological complexity. In Biological Physics, pp. 123-139. Springer.
[70] Golestanian, R., Liverpool, T. B. & Ajdari, A.2007Designing phoretic micro-and nano-swimmers. New J. Phys.9 (5), 126.
[71] Gonzalez-Rodriguez, D. & Lauga, E.2009Reciprocal locomotion of dense swimmers in Stokes flow. J. Phys.: Condens. Matter21 (20), 204103.
[72] Guazzelli, E. & Morris, J. F.2011A Physical Introduction to Suspension Dynamics, vol. 45. Cambridge University Press. · Zbl 1426.76003
[73] Haj-Hariri, H., Nadim, A. & Borhan, A.1990Effect of inertia on the thermocapillary velocity of a drop. J. Colloid Interface Sci.140 (1), 277-286.
[74] Haj-Hariri, H., Nadim, A. & Borhan, A.1993Reciprocal theorem for concentric compound drops in arbitrary Stokes flows. J. Fluid Mech.252, 265-277. · Zbl 0776.76023
[75] Happel, J. & Brenner, H.1983Low Reynolds Number Hydrodynamics, with Special Applications to Particulate Media. Martinus Nijhoff.
[76] Hauge, E. H. & Martin-Löf, A.1973Fluctuating hydrodynamics and brownian motion. J. Stat. Phys.7, 259-281. · Zbl 1255.82053
[77] Heaslet, M. A. & Spreiter, J. R.1953 Reciprocity relations in aerodynamics. NACA Report 1119, 253-268.
[78] von Helmholtz, H.1856Handbuch der Physiologischen Optik. Leopold Voss.
[79] von Helmholtz, H.1887Uber die physikalische bedeutung des prinzips der kleinsten wirkung. J. Reine Angew. Math.100, 137-166. · JFM 18.0941.01
[80] Higdon, J. J. L. & Kojima, M.1981On the calculation of Stokes flow past porous particles. Intl J. Multiphase Flow7 (6), 719-727. · Zbl 0484.76049
[81] Hinch, E. J.1972Note on the symmetries of certain material tensors for a particle in Stokes flow. J. Fluid Mech.54 (3), 423-425. · Zbl 0245.76021
[82] Hinch, E. J.1991Perturbation Methods. Cambridge University Press. · Zbl 0746.34001
[83] Ho, B. P. & Leal, L. G.1974Inertial migration of rigid spheres in two-dimensional unidirectional flows. J. Fluid Mech.65 (2), 365-400. · Zbl 0284.76076
[84] Ho, B. P. & Leal, L. G.1976Migration of rigid spheres in a two-dimensional unidirectional shear flow of a second-order fluid. J. Fluid Mech.76 (4), 783-799. · Zbl 0339.76057
[85] Howell, L. L.2001Compliant Mechanisms. John Wiley & Sons.
[86] Hu, H. H. & Joseph, D. D.1999Lift on a sphere near a plane wall in a second-order fluid. J. Non-Newtonian Fluid Mech.88 (1-2), 173-184. · Zbl 0971.76007
[87] Jafari Kang, S., Dehdashti, E., Vandadi, V. & Masoud, H.2019Optimal viscous damping of vibrating porous cylinders. J. Fluid. Mech.874, 339-358. · Zbl 1419.76612
[88] Joseph, D. D.1973Domain perturbations: the higher order theory of infinitesimal water waves. Arch. Rat. Mech. Anal.51, 295-303. · Zbl 0271.76009
[89] Kamrin, K. & Stone, H. A.2011The symmetry of mobility laws for viscous flow along arbitrarily patterned surfaces. Phys. Fluids23 (3), 031701.
[90] Kaplun, S.1957Low Reynolds number flow past a circular cylinder. J. Math. Mech.595-603. · Zbl 0080.18502
[91] Kaplun, S. & Lagerstrom, P. A.1957Asymptotic expansions of Navier-Stokes solutions for small Reynolds numbers. J. Math. Mech.6 (5), 585-593. · Zbl 0080.18501
[92] Karrila, S. J. & Kim, S.1989Integral equations of the second kind for Stokes flow: direct solution for physical variables and removal of inherent accuracy limitations. Chem. Engng Commun.82 (1), 123-161.
[93] Khair, A. S. & Chisholm, N. G.2014Expansions at small Reynolds numbers for the locomotion of a spherical squirmer. Phys. Fluids26 (1), 011902.
[94] Khair, A. S. & Squires, T. M.2010Active microrheology: a proposed technique to measure normal stress coefficients of complex fluids. Phys. Rev. Lett.105 (15), 156001.
[95] Kim, S.1986The motion of ellipsoids in a second order fluid. J. Non-Newtonian Fluid Mech.21 (2), 255-269. · Zbl 0594.76007
[96] Kim, S.2015Ellipsoidal microhydrodynamics without elliptic integrals and how to get there using linear operator theory. Ind. Engng Chem. Res.54 (42), 10497-10501.
[97] Kim, S. & Karrila, S. J.2005Microhydrodynamics: Principles and Selected Applications. Courier Corporation.
[98] Koch, D. L. & Subramanian, G.2006The stress in a dilute suspension of spheres suspended in a second-order fluid subject to a linear velocity field. J. Non-Newtonian Fluid Mech.138 (2-3), 87-97. · Zbl 1195.76404
[99] Kumar, A. & Graham, M. D.2012Accelerated boundary integral method for multiphase flow in non-periodic geometries. J. Comput. Phys.231 (20), 6682-6713. · Zbl 1284.76277
[100] Ladyzhenskaya, O. A.1969The Mathematical Theory of Viscous Incompressible Flow. Gordon & Breach. · Zbl 0184.52603
[101] Lagerstrom, P. A. & Cole, J. D.1955Examples illustrating expansion procedures for the Navier-Stokes equations. J. Ration. Mech. Anal.4, 817-882. · Zbl 0066.19505
[102] Lamb, H.1887On reciprocal theorems in dynamics. Proc. Lond. Math. Soc.1 (1), 144-151. · JFM 20.0932.01
[103] Lamb, H.1932Hydrodynamics. Cambridge University Press. · JFM 58.1298.04
[104] Lammert, P. E., Crespi, V. H. & Nourhani, A.2016Bypassing slip velocity: rotational and translational velocities of autophoretic colloids in terms of surface flux. J. Fluid Mech.802, 294-304. · Zbl 1462.76052
[105] Landau, L. D. & Lifshitz, E. M.1987Fluid Mechanics. Pergamon Press. · Zbl 0081.22207
[106] Lauga, E. & Davis, A. M. J.2012Viscous Marangoni propulsion. J. Fluid Mech.705, 120-133. · Zbl 1250.76209
[107] Lauga, E. & Michelin, S.2016Stresslets induced by active swimmers. Phys. Rev. Lett.117 (14), 148001. · Zbl 1460.76956
[108] Leal, L. G.1975The slow motion of slender rod-like particles in a second-order fluid. J. Fluid Mech.69 (2), 305-337. · Zbl 0302.76058
[109] Leal, L. G.1980Particle motions in a viscous fluid. Annu. Rev. Fluid Mech.12, 435-476. · Zbl 0474.76104
[110] Leal, L. G.2007Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes. Cambridge University Press. · Zbl 1133.76001
[111] Lee, S. H., Chadwick, R. S. & Leal, L. G.1979Motion of a sphere in the presence of a plane interface. Part 1. An approximate solution by generalization of the method of Lorentz. J. Fluid Mech.93 (4), 705-726. · Zbl 0434.76024
[112] Legendre, D. & Magnaudet, J.1997A note on the lift force on a spherical bubble or drop in a low-Reynolds-number shear flow. Phys. Fluids9, 3572-3574.
[113] Leshansky, A. M. & Brady, J. F.2004Force on a sphere via the generalized reciprocal theorem. Phys. Fluids16 (3), 843-844. · Zbl 1186.76318
[114] Lorentz, H. A.1895Attempt of a Theory of Electrical and Optical Phenomena in Moving Bodies (in Dutch). E. J. Brill.
[115] Lorentz, H. A.1896A general theorem concerning the motion of a viscous fluid and a few consequences derived from it (in Dutch). Versl. Konigl. Akad. Wetensch. Amst.5, 168-175. · JFM 27.0645.02
[116] Lovalenti, P. M. & Brady, J. F.1993The hydrodynamic force on a rigid particle undergoing arbitrary time-dependent motion at small Reynolds number. J. Fluid Mech.256, 561-605. · Zbl 0795.76025
[117] Love, A. E. H.2013A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press. · Zbl 1258.74003
[118] Magnaudet, J.2003Small inertial effects on a spherical bubble, drop or particle moving near a wall in a time-dependent linear flow. J. Fluid Mech.485, 115-142. · Zbl 1088.76526
[119] Magnaudet, J.2011aA ‘reciprocal’ theorem for the prediction of loads on a body moving in an inhomogeneous flow at arbitrary Reynolds number. J. Fluid Mech.689, 564-604. · Zbl 1241.76120
[120] Magnaudet, J.2011bA ‘reciprocal’ theorem for the prediction of loads on a body moving in an inhomogeneous flow at arbitrary Reynolds number - CORRIGENDUM. J. Fluid Mech.689, 605-606. · Zbl 1241.76121
[121] Magnaudet, J., Takagi, S. & Legendre, D.2003Drag, deformation and lateral migration of a buoyant drop moving near a wall. J. Fluid Mech.476, 115-157. · Zbl 1041.76078
[122] Manga, M. & Stone, H. A.1993Buoyancy-driven interactions between two deformable viscous drops. J. Fluid Mech.256, 647-683. · Zbl 1392.76011
[123] Masoud, H. & Stone, H. A.2014A reciprocal theorem for Marangoni propulsion. J. Fluid Mech.741, R4.
[124] Maxwell, J. C.1864On the calculation of the equilibrium and stiffness of frames. Phil. Mag.27 (182), 294-299.
[125] Maxwell, J. C.1881A Treatise on Electricity and Magnetism. Oxford University Press. · JFM 05.0556.01
[126] Michaelides, E. E. & Feng, Z.1994Heat transfer from a rigid sphere in a nonuniform flow and temperature field. Intl J. Heat Mass Transfer37 (14), 2069-2076. · Zbl 0926.76031
[127] Michelin, S. & Lauga, E.2015A reciprocal theorem for boundary-driven channel flows. Phys. Fluids27 (11), 111701. · Zbl 1308.76349
[128] Morrison, F. A. & Griffiths, S. K.1981On the transient convective transport from a body of arbitrary shape. J. Heat Transfer103 (1), 92-95.
[129] Mozaffari, A., Sharifi-Mood, N., Koplik, J. & Maldarelli, C.2016Self-diffusiophoretic colloidal propulsion near a solid boundary. Phys. Fluids28 (5), 053107.
[130] Munk, M. M.1950The reversal theorem of linearized supersonic airfoil theory. J. Appl. Phys.21 (2), 159-161. · Zbl 0040.11601
[131] Nadim, A., Haj-Hariri, H. & Borhan, A.1990Thermocapillary migration of slightly deformed droplets. Particul. Sci. Technol.8 (3-4), 191-198.
[132] Navier, C. L. M. H.1826Résumé des Leçons données à l’École des Ponts et Chaussées sur l’Application de la Mécanique à l’Établissement des Constructions et des Machines, vol. 1. Didot.
[133] Nazockdast, E., Rahimian, A., Zorin, D. & Shelley, M.2017A fast platform for simulating semi-flexible fiber suspensions applied to cell mechanics. J. Comput. Phys.329, 173-209. · Zbl 1406.92032
[134] Nourhani, A., Lammert, P. E., Crespi, V. H. & Borhan, A.2015A general flux-based analysis for spherical electrocatalytic nanomotors. Phys. Fluids27 (1), 012001.
[135] Nunan, K. C. & Keller, J. B.1984Effective viscosity of a periodic suspension. J. Fluid Mech.142, 269-287. · Zbl 0595.76104
[136] Onsager, L.1931aReciprocal relations in irreversible processes. I. Phys. Rev.37 (4), 405. · Zbl 0001.09501
[137] Onsager, L.1931bReciprocal relations in irreversible processes. II. Phys. Rev.38 (12), 2265. · Zbl 0004.18303
[138] Oppenheimer, N., Navardi, S. & Stone, H. A.2016Motion of a hot particle in viscous fluids. Phys. Rev. Fluids1 (1), 014001.
[139] Oseen, C. W.1910Stokes formula and a related theorem in hydrodynamics. Ark. Mat. Astron. Fys.6, 20.
[140] Pak, O. S., Feng, J. & Stone, H. A.2014Viscous Marangoni migration of a drop in a Poiseuille flow at low surface Péclet numbers. J. Fluid Mech.753, 535-552. · Zbl 1329.76355
[141] Pak, O. S., Zhu, L., Brandt, L. & Lauga, E.2012Micropropulsion and microrheology in complex fluids via symmetry breaking. Phys. Fluids24 (10), 103102.
[142] Papavassiliou, D. & Alexander, G. P.2015The many-body reciprocal theorem and swimmer hydrodynamics. Europhys. Lett.110 (4), 44001.
[143] Potton, R. J.2004Reciprocity in optics. Rep. Prog. Phys.67 (5), 717.
[144] Pozrikidis, C.1992Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press. · Zbl 0772.76005
[145] Pozrikidis, C.2016Reciprocal identities and integral formulations for diffusive scalar transport and Stokes flow with position-dependent diffusivity or viscosity. J. Engng Maths96 (1), 95-114. · Zbl 1358.76067
[146] Proudman, I. & Pearson, J. R. A.1957Expansions at small Reynolds numbers for the flow past a sphere and a circular cylinder. J. Fluid Mech.2 (3), 237-262. · Zbl 0077.39103
[147] Rallabandi, B., Yang, F. & Stone, H. A.2019 Motion of hydrodynamically interacting active particles. arXiv:1901.04311.
[148] Rallabandi, B., Hilgenfeldt, S. & Stone, H. A.2017aHydrodynamic force on a sphere normal to an obstacle due to a non-uniform flow. J. Fluid Mech.818, 407-434. · Zbl 1383.76503
[149] Rallabandi, B., Saintyves, B., Jules, T., Salez, T., Schönecker, C., Mahadevan, L. & Stone, H. A.2017bRotation of an immersed cylinder sliding near a thin elastic coating. Phys. Rev. Fluids2 (7), 074102.
[150] Rallison, J. M.1978Note on the Faxén relations for a particle in Stokes flow. J. Fluid Mech.88 (3), 529-533. · Zbl 0385.76035
[151] Rallison, J. M.2012The stress in a dilute suspension of liquid spheres in a second-order fluid. J. Fluid Mech.693, 500-507. · Zbl 1250.76174
[152] Rallison, J. M. & Acrivos, A.1978A numerical study of the deformation and burst of a viscous drop in an extensional flow. J. Fluid Mech.89 (1), 191-200. · Zbl 0433.76082
[153] Ramachandran, A. & Khair, A. S.2009The dynamics and rheology of a dilute suspension of hydrodynamically Janus spheres in a linear flow. J. Fluid Mech.633, 233-269. · Zbl 1183.76901
[154] Ranger, K. B.1978The circular disk straddling the interface of a two-phase flow. Intl J. Multiphase Flow4, 263-277. · Zbl 0384.76074
[155] Rayleigh, Lord1873Investigation of the character of an incompressible fluid of variable density. Proc. Lond. Math. Soc.4, 363. · JFM 15.0848.02
[156] Rayleigh, Lord1876On the application of the principle of reciprocity to acoustics. Proc. R. Soc. Lond.25, 118-122.
[157] Rayleigh, Lord1877The Theory of Sound, vol. 1. Macmillan. · JFM 15.0848.02
[158] Relyea, L. M. & Khair, A. S.2017Forced convection heat and mass transfer from a slender particle. Chem. Engng Sci.174, 285-289.
[159] Reyes, D. R.2015The art in science of MicroTAS: the 2014 issue. Lab on a Chip15 (9), 1981-1983.
[160] Roper, M. & Brenner, M. P.2009A nonperturbative approximation for the moderate Reynolds number Navier-Stokes equations. Proc. Natl Acad. Sci. USA106 (9), 2977-2982. · Zbl 1202.76053
[161] Saffman, P. G.1965The lift on a small sphere in a slow shear flow. J. Fluid Mech.22, 385-400. · Zbl 0218.76043
[162] Segre, G. & Silberberg, A.1961Radial particle displacements in Poiseuille flow of suspensions. Nature189 (4760), 209.
[163] Segre, G. & Silberberg, A.1963Non-Newtonian behavior of dilute suspensions of macroscopic spheres in a capillary viscometer. J. Colloid Sci.18 (4), 312-317.
[164] Segre, G. & Silberberg, A. J.1962aBehaviour of macroscopic rigid spheres in Poiseuille flow. Part 1. Determination of local concentration by statistical analysis of particle passages through crossed light beams. J. Fluid Mech.14 (1), 115-135. · Zbl 0118.43203
[165] Segre, G. & Silberberg, A. J.1962bBehaviour of macroscopic rigid spheres in Poiseuille flow. Part 2. Experimental results and interpretation. J. Fluid Mech.14 (1), 136-157. · Zbl 0118.43203
[166] Sen, A., Ibele, M., Hong, Y. & Velegol, D.2009Chemo- and phototactic nano/microbots. Faraday Discuss.143, 15-27.
[167] Sherwood, J. D.1980The primary electroviscous effect in a suspension of spheres. J. Fluid Mech.101 (3), 609-629. · Zbl 0458.76103
[168] Sherwood, J. D.1982Electrophoresis of rods. J. Chem. Soc. Faraday Trans. 278 (7), 1091-1100.
[169] Sherwood, J. D. & Stone, H. A.1995Electrophoresis of a thin charged disk. Phys. Fluids7 (4), 697-705. · Zbl 1032.76720
[170] Shoele, K. & Eastham, P. S.2018Effects of nonuniform viscosity on ciliary locomotion. Phys. Rev. Fluids3 (4), 043101.
[171] Sierou, A. & Brady, J. F.2001Accelerated Stokesian dynamics simulations. J. Fluid Mech.448, 115-146. · Zbl 1045.76034
[172] Solomentsev, Y. & Anderson, J. L.1994Electrophoresis of slender particles. J. Fluid Mech.279, 197-215. · Zbl 0825.76858
[173] Squires, T. M.2008Electrokinetic flows over inhomogeneously slipping surfaces. Phys. Fluids20 (9), 092105. · Zbl 1182.76716
[174] Stokes, G. G.1849On the Perfect Blackness of the Central Spot in Newton’s Rings, and on the Verification of Fresnel’s Formula for the intensities of Reflected and Reflacted Rays. In Cambridge Library Collection - Mathematics, vol. 2, pp. 89-103. Cambridge University Press.
[175] Stone, H. A. & Duprat, C.2016Low-Reynolds-number flows. In Fluid-structure Interactions in Low-Reynolds-Number Flows (ed. C.Duprat & H. A.Stone), chap. 2, pp. 25-77. Royal Society of Chemistry.
[176] Stone, H. A.1989Heat/mass transfer from surface films to shear flows at arbitrary Peclet numbers. Phys. Fluids1 (7), 1112-1122.
[177] Stone, H. A., Brady, J. F. & Lovalenti, P. M.2016 Inertial effects on the rheology of suspensions and on the motion of individual particles. Available from the authors.
[178] Stone, H. A. & Masoud, H.2015Mobility of membrane-trapped particles. J. Fluid Mech.781, 494-505. · Zbl 1359.76038
[179] Stone, H. A. & Samuel, A. D. T.1996Propulsion of microorganisms by surface distortions. Phys. Rev. Lett.77, 4102-4104.
[180] Subramanian, G., Koch, D. L., Zhang, J. & Wang, C.2011The influence of the inertially dominated outerregion on the rheology of a dilute dispersion of low-Reynolds-number drops or rigid particles. J. Fluid Mech.674, 307-358. · Zbl 1241.76405
[181] Subramanian, R. S.1985The Stokes force on a droplet in an unbounded fluid medium due to capillary effects. J. Fluid Mech.153, 389-400. · Zbl 0595.76106
[182] Tanzosh, J. P. & Stone, H. A.1994Motion of a rigid particle in a rotating viscous flow: an integral equation approach. J. Fluid Mech.275, 225-256. · Zbl 0815.76088
[183] Tanzosh, J. P. & Stone, H. A.1996A general approach for analyzing the arbitrary motion of a circular disk in a Stokes flow. Chem. Engng Commun.148 (1), 333-346.
[184] Taylor, G. I.1960Low Reynolds Number Flow (16 mm film). Educational Services Inc.
[185] Teubner, M.1982The motion of charged colloidal particles in electric fields. J. Chem. Phys.76 (11), 5564-5573.
[186] Thiébaud, M. & Misbah, C.2013Rheology of a vesicle suspension with finite concentration: a numerical study. Phys. Rev. E88, 062707.
[187] Ursell, F. & Ward, G. N.1950On some general theorems in the linearized theory of compressible flow. Q. J. Mech. Appl. Maths3 (3), 326-348. · Zbl 0041.11403
[188] Van Dyke, M. D.1964Perturbation Methods in Fluid Dynamics. Academic Press. · Zbl 0136.45001
[189] Vandadi, V., Jafari Kang, S. & Masoud, H.2016Reciprocal theorem for convective heat and mass transfer from a particle in Stokes and potential flows. Phys. Rev. Fluids1 (2), 022001.
[190] Vandadi, V., Jafari Kang, S. & Masoud, H.2017Reverse Marangoni surfing. J. Fluid Mech.811, 612-621. · Zbl 1383.76129
[191] Villat, H.1943Leçons sur les Fluides Visqueux. Gauthier-Villars.
[192] Wang, S. & Ardekani, A.2012Inertial squirmer. Phys. Fluids24 (10), 101902.
[193] Whitehead, A. N.1889Second approximations to viscous fluid motion. Q. J. Maths23, 143-152. · JFM 20.0975.01
[194] Würger, A.2014Thermally driven Marangoni surfers. J. Fluid Mech.752, 589-601. · Zbl 1325.76075
[195] Yano, H., Kieda, A. & Mizuno, I.1991The fundamental solution of Brinkman’s equation in two dimensions. Fluid Dyn. Res.7 (3-4), 109-118.
[196] Yariv, E. & Brenner, H.2003Near-contact electrophoretic motion of a sphere parallel to a planar wall. J. Fluid Mech.484, 85-111. · Zbl 1031.76060
[197] Yariv, E. & Brenner, H.2004The electrophoretic mobility of a closely fitting sphere in a cylindrical pore. SIAM J. Appl. Maths64 (2), 423-441. · Zbl 1126.76396
[198] Youngren, G. K. & Acrivos, A.1975Stokes flow past a particle of arbitrary shape: a numerical method of solution. J. Fluid Mech.69 (2), 377-403. · Zbl 0314.76031
[199] Zhang, W. & Stone, H. A.1998Oscillatory motions of circular disks and nearly spherical particles in viscous flows. J. Fluid Mech.367, 329-358. · Zbl 0912.76015
[200] Zhao, H., Isfahani, A. H. G., Olson, L. N. & Freund, J. B.2010A spectral boundary integral method for flowing blood cells. J. Comp. Phys.229 (10), 3726-3744. · Zbl 1186.92013
[201] Zhao, H. & Shaqfeh, E. S. G.2011The dynamics of a vesicle in simple shear flow. J. Fluid Mech.674, 578-604. · Zbl 1241.76133
[202] Zinchenko, A. Z. & Davis, R. H.2008Algorithm for direct numerical simulation of emulsion flow through a granular material. J. Comput. Phys.227 (16), 7841-7888. · Zbl 1287.76231
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.