×

Lepage manifolds. (English) Zbl 1393.58004

Falcone, Giovanni (ed.), Lie groups, differential equations, and geometry. Advances and surveys. Cham: Springer; Palermo: Università degli Studi di Palermo (ISBN 978-3-319-62180-7/hbk; 978-3-319-62181-4/ebook). UNIPA Springer Series, 321-361 (2017).
Let \(\pi:Y\to X\) be a fibred manifold (surjective submersion) with fibre dimension \(m\) and base manifold dimension \(n\). All manifolds are assumed to be smooth. Let \(\pi_r:J^r Y\to X\) be the \(r\)-jet prolongation of this fibred manifold. Lepage manifold is a fibred manifold endowed with a certain form – Lepage \((n+1)\)-form. Every \(q\)-form on \(Y\), \(q\geq n\), is a Lepage form, as well as every closed \(q\)-form on \(J^rY\), \(q\geq n\), and many others.
The author motivates to introduce the concept of a Lepage manifold which is based on a proper generalization of Lepage \((n+1)\)-forms to non-variational equations. This generalization appears within the theory of variational sequences. The author aims to show how one can put together in a unified framework, linked together and extended many particular results in the calculus of variations and in the geometric theory of differential equations by using Lepage manifolds. To achieve this goal the author introduces Lepage forms (of any degree) in the context of the variational sequence and reminds the solution of the Inverse Problem of the Calculus of Variations. One section is devoted to Lepage manifolds to show the relationship with the variational equations and with non-variational equations. Regular Lepage manifolds and methods to transfer non-variational Lepage manifolds to the variational ones are considered. Furthermore the author presents some results concerning Lepage manifolds of order zero which are a natural framework for general Hamiltonian systems. Then she presents original results on Legendre transformations and Poisson structure for the generalized (and not necessarily variational) Hamiltonian systems. A new concept of a directional Poisson bracket in covariant Hamiltonian field theory is given. The last two sections are devoted to some applications of Lepage manifolds in classical field theories and mechanics. More precisely, the author presents the Lepage manifolds setting applicable to electromagnetism (Maxwell equations), gravity (Einstein equations), gauge theories, and others. Moreover she considers a fibred manifold over a base of dimension 1. In this case equations for sections of \(\pi\) are ordinary differential equations, and Lepage \((n+1)\)-forms are 2-forms. Finally, the author shows that (and how) Lepage manifolds naturally arise in Riemann and Finsler geometry.
For the entire collection see [Zbl 1381.53010].

MSC:

58A20 Jets in global analysis
55R10 Fiber bundles in algebraic topology
55N30 Sheaf cohomology in algebraic topology
53C60 Global differential geometry of Finsler spaces and generalizations (areal metrics)
58E30 Variational principles in infinite-dimensional spaces
37J05 Relations of dynamical systems with symplectic geometry and topology (MSC2010)
70S05 Lagrangian formalism and Hamiltonian formalism in mechanics of particles and systems
35R01 PDEs on manifolds
49Q99 Manifolds and measure-geometric topics
Full Text: DOI

References:

[1] R. Abraham, J.E. Marsden, Foundations of Mechanics, 2nd edn. (The Benjamin/Cummings Publishing Company, Reading, 1978) · Zbl 0393.70001
[2] I. Anderson, The Variational Bicomplex, Utah State University, Technical Report (1989)
[3] I. Anderson, T. Duchamp, On the existence of global variational principles. Am. J. Math. 102, 781-867 (1980) · Zbl 0454.58021 · doi:10.2307/2374195
[4] V.I. Arnold, V.V. Kozlov, A.I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics (Springer, Berlin, 2006) · Zbl 1105.70002
[5] D.E. Betounes, Extension of the classical Cartan form. Phys. Rev. D 29, 599-606 (1984) · Zbl 1469.58011 · doi:10.1103/PhysRevD.29.599
[6] G.E. Bredon, Sheaf Theory (McGraw-Hill, New York, 1967) · Zbl 0158.20505
[7] R. Bryant, P. Griffiths, D. Grossmann, Exterior Differential Systems and Euler-Lagrange Partial Differential Equations. Chicago Lectures in Mathematics (University of Chicago Press, Chicago, 2003) · Zbl 1024.58006
[8] F. Cantrijn, L.A. Ibort, M. de León, Hamiltonian structures on multisymplectic manifolds. Rend. Sem. Mat. Univ. Pol. Torino 54, 225-236 (1996) · Zbl 0911.58016
[9] C. Carathéodory, Über die Variationsrechnung bei mehrfachen Integralen. Acta Szeged Sect. Scient. Mathem. 4, 193-216 (1929) · JFM 55.0900.01
[10] J.F. Cariñena, M. Crampin, L.A. Ibort, On the multisymplectic formalism for first order field theories. Diff. Geom. Appl. 1, 345-374 (1991) · Zbl 0782.58057 · doi:10.1016/0926-2245(91)90013-Y
[11] É. Cartan, Lecons Sur Les Invariants IntÉgraux (Hermann, Paris, 1922) · JFM 48.0538.02
[12] M. Crampin, D.J. Saunders, The Hilbert-Carathéodory and Poincaré-Cartan forms for higher-order multiple-integral variational problems. Houston J. Math. 30(3), 657-689 (2004) · Zbl 1057.58008
[13] M. de León, P.R. Rodrigues, Generalized Classical Mechanics and Field Theory (North-Holland, Amsterdam, 1985) · Zbl 0581.58015
[14] M. de León, P.R. Rodrigues, Methods of Differential Geometry in Analytical Mechanics (North-Holland, Amsterdam, 1989) · Zbl 0687.53001
[15] M. de León, J.C. Marrero, D.M. de Diego, A new geometric setting for classical field theories. Banach Cent. Publ. 59, 189-209 (2003) · Zbl 1036.70016 · doi:10.4064/bc59-0-10
[16] P. Dedecker, Calcul des variations, formes différentielles et champs géodésiques, in Coll. internat. du C.N.R.S., Strasbourg, 1953 (C.N.R.S., Paris, 1954), pp. 17-34 · Zbl 0052.32003
[17] P. Dedecker, On the generalization of symplectic geometry to multiple integrals in the calculus of variations, in Lecture Notes in Mathematics, vol. 570 (Springer, Berlin, 1977), pp. 395-456 · Zbl 0352.49018
[18] P. Dedecker, Sur le formalisme de Hamilton-Jacobi-E. Cartan pour une intègrale multiple d’ordre supérieur. C. R. Acad. Sci. Paris Sér. I 299, 363-366 (1984) · Zbl 0669.49015
[19] P. Dedecker, Existe-t-il, en calcul des variations, un formalisme de Hamilton-Jacobi-É. Cartan pour les intégrales multiples d’ordre supérieur? C. R. Acad. Sci. Paris Sér. 1 298, 397-400 (1984) · Zbl 0577.49028
[20] A. Echeverria-Enriquez, M.C. Muñoz-Lecanda, N. Román-Roy, Multivector field formulation of hamiltonian field theories: equations and symmetries. J. Phys. A Math. Gen. 32, 8461-8484 (1999) · Zbl 0982.70019 · doi:10.1088/0305-4470/32/48/309
[21] A. Echeverria-Enriquez, M.C. Muñoz-Lecanda, N. Román-Roy, On the multimomentum bundles and the Legendre maps in field theories. Rep. Math. Phys. 45, 85-105 (2000) · Zbl 0953.70020 · doi:10.1016/S0034-4877(00)88873-4
[22] C. Ehresmann, Les prolongements d’une variété différentiable: 1. calcul des jets, prolongement principal. C. R. Acad. Sci. Paris 233, 598-600 (1951) · Zbl 0043.17401
[23] C. Ehresmann, Les prolongements d’une space fibré différentiable. C. R. Acad. Sci. Paris 240, 1755-1757 (1955) · Zbl 0064.17502
[24] M. Ferraris, M. Francaviglia, On the global structure of the Lagrangian and Hamiltonian formalisms in higher order calculus of variations, in Proceedings of the International Meeting on Geometry and Physics, Florence, 1982, ed. by M. Modugno (Pitagora, Bologna, 1983), pp. 43-70 · Zbl 0548.58010
[25] P.L. Garcia, The Poincaré-Cartan invariant in the calculus of variations. Symp. Math. 14, 219-246 (1974) · Zbl 0303.53040
[26] P.L. Garcia, J. Muñoz, On the geometrical structure of higher order variational calculus, in Modern Developments in Analytical Mechanics I: Geometrical Dynamics, ed. by S. Benenti, M. Francaviglia, A. Lichnerowicz. Proceedings of the IUTAM-ISIMM Symposium, Torino, 1982 (Accad. delle Scienze di Torino, Torino, 1983), pp. 127-147 · Zbl 0569.58008
[27] G. Giachetta, L. Mangiarotti, G. Sardanashvily, New Lagrangian and Hamiltonian Methods in Field Theory (World Scientific, Singapore, 1997) · Zbl 0913.58001 · doi:10.1142/2199
[28] G. Giachetta, L. Mangiarotti, G. Sardanashvily, Covariant Hamilton equations for field theory. J. Phys. A Math. Gen. 32, 6629-6642 (1999) · Zbl 0982.70020 · doi:10.1088/0305-4470/32/38/302
[29] H. Goldschmidt, S. Sternberg, The Hamilton-Cartan formalism in the calculus of variations. Ann. Inst. Fourier 23, 203-267 (1973) · Zbl 0243.49011
[30] M.J. Gotay, A multisymplectic framework for classical field theory and the calculus of variations, I. Covariant Hamiltonian formalism, in Mechanics, Analysis and Geometry: 200 Years After Lagrange, ed. by M. Francaviglia, D.D. Holm (North Holland, Amsterdam, 1990), pp. 203-235 · Zbl 0741.70012
[31] M.J. Gotay, J.M. Nester, G. Hinds, Presymplectic manifolds and the Dirac-Bergmann theory of constraints. J. Math. Phys. 19, 2388-2399 (1978) · Zbl 0418.58010 · doi:10.1063/1.523597
[32] M.J. Gotay, J.A. Isenberg, J.E. Marsden, R. Montgomery, Momentum Mappings and the Hamiltonian Structure of Classical Field Theories with Constraints (Springer, New York, 1992)
[33] K. Grabowska, Lagrangian and Hamiltonian formalism in field theory: a simple model. J. Geom. Mech. 2, 375-395 (2010) · Zbl 1222.70025 · doi:10.3934/jgm.2010.2.375
[34] P.A. Griffiths, Exterior Differential Systems and the Calculus of Variations. Progress in Mathematics, vol. 25 (Birkhäuser, Boston, 1983) · Zbl 0512.49003
[35] D.R. Grigore, On a generalization of the Poincaré-Cartan form in higher-order field theory, in Variations, Geometry and Physics (Nova Science Publishers, New York, 2008), pp. 57-76 · Zbl 1208.58018
[36] A. Haková, O. Krupková, Variational first-order partial differential equations. J. Differ. Equ. 191, 67-89 (2003) · Zbl 1028.35043 · doi:10.1016/S0022-0396(02)00160-2
[37] H. Helmholtz, Ueber die physikalische Bedeutung des Prinzips der kleinsten Wirkung. J. für die reine u. angewandte Math. 100, 137-166 (1887) · JFM 18.0941.01
[38] H.A. Kastrup, Canonical theories of Lagrangian dynamical systems in physics. Phys. Rep. 101, 1-167 (1983) · doi:10.1016/0370-1573(83)90037-6
[39] J. Kijowski, A finite-dimensional canonical formalism in the classical field theory. Commun. Math. Phys. 30, 99-128 (1973) · doi:10.1007/BF01645975
[40] J. Kijowski, W. Szczyrba, Multisymplectic manifolds and the geometrical construction of the Poisson brackets in the classical field theory, in Geometrie symplectique et physique mathematique. Colloques internationaux du Centre national de la recherche scientifique, vol. 237 (C.N.R.S., Paris, 1975), pp. 347-378 · Zbl 0338.53021
[41] J. Kijowski, W.M. Tulczyjew, A Symplectic Framework for Field Theories. Lecture Notes in Physics, vol. 107 (Springer, Berlin, 1979) · Zbl 0439.58002
[42] I. Kolář, Some geometric aspects of the higher order variational calculus, in Geometrical Methods in Physics, ed. by D. Krupka. Proceedings of the Conference on Differential Geometry and its Applications. Nové Město na Moravě, Sept. 1983, vol. 2 (J. E. Purkyně University, Brno, 1984), pp. 155-166 · Zbl 0559.58002
[43] M. Krbek, J. Musilová, Representation of the variational sequence by differential forms. Rep. Math. Phys. 51(2-3), 251-258 (2003) · Zbl 1046.58005 · doi:10.1016/S0034-4877(03)80018-6
[44] M. Krbek, J. Musilová, Representation of the variational sequence by differential forms. Acta Appl. Math. 88(2), 177-199 (2005) · Zbl 1085.58014 · doi:10.1007/s10440-005-4980-x
[45] D. Krupka, Some geometric aspects of variational problems in fibred manifolds. Folia Fac. Sci. Nat. Univ. Purk. Brunensis, Physica, Brno (Czechoslovakia) 14, 65 pp. (1973). ArXiv:math-ph/0110005
[46] D. Krupka, A map associated to the Lepagean forms of the calculus of variations in fibred manifolds. Czechoslov. Math. J. 27, 114-118 (1977) · Zbl 0373.58004
[47] D. Krupka, On the local structure of the Euler-Lagrange mapping of the calculus of variations, in Proceedings of the Conference on Differential Geometry and its Applications, Nové Město na Moravě (Czechoslovakia), 1980 (Charles University, Prague, 1982), pp. 181-188. ArXiv:math-ph/0203034 · Zbl 0513.49027
[48] D. Krupka, Lepagean forms in higher order variational theory, in Modern Developments in Analytical Mechanics I: Geometrical Dynamics, ed. by S. Benenti, M. Francaviglia, A. Lichnerowicz. Proceedings of the IUTAM-ISIMM Symposium, Torino, 1982 (Accad. Sci. Torino, Torino, 1983), pp. 197-238 · Zbl 0572.58003
[49] D. Krupka, Variational sequences on finite order jet spaces, in Differential Geometry and Its Applications, ed. by J. Janyška, D. Krupka. Conference Proceeding, Brno, 1989 (World Scientific, Singapore, 1990), pp. 236-254 · Zbl 0813.58014
[50] D. Krupka, Variational sequences in mechanics. Calc. Var. 5, 557-583 (1997) · Zbl 0892.58001 · doi:10.1007/s005260050079
[51] D. Krupka, Global variational theory in fibred spaces, in Handbook of Global Analysis (Elsevier Science B. V., Amsterdam, 2008), pp.773-836 · Zbl 1236.58026
[52] D. Krupka, Introduction to Global Variational Geometry (Atlantis Press, Amsterdam, 2015) · Zbl 1310.49001 · doi:10.2991/978-94-6239-073-7
[53] D. Krupka, J. Šeděnková, Variational sequences and Lepage forms, in Differential Geometry and Its Applications, ed. by J. Bureš, O. Kowalski, D. Krupka, J. Slovák. Conference Proceeding, Prague, August 2004 (Charles University, Prague, 2005), pp. 617-627 · Zbl 1115.35349
[54] D. Krupka, O. Krupková, G. Prince, W. Sarlet, Contact symmetries of the Helmholtz form. Differ. Geom. Appl. 25, 518-542 (2007) · Zbl 1354.58012 · doi:10.1016/j.difgeo.2007.06.003
[55] D. Krupka, O, Krupková, D. Saunders, The Cartan form and its generalizations in the calculus of variations. Int. J. Geom. Meth. Mod. Phys. 7, 631-654 (2010) · Zbl 1194.49069
[56] O. Krupková, Lepagean 2-forms in higher order Hamiltonian mechanics, I. Regularity. Arch. Math. (Brno) 22, 97-120 (1986) · Zbl 0637.58002
[57] O. Krupková, On the inverse problem of the calculus of variations for ordinary differential equations. Math. Bohem. 118, 261-276 (1993) · Zbl 0786.58012
[58] O. Krupková, A geometric setting for higher-order Dirac-Bergmann theory of constraints. J. Math. Phys. 35, 6557-6576 (1994) · Zbl 0823.70016 · doi:10.1063/1.530691
[59] O. Krupková, The Geometry of Ordinary Variational Equations. Lecture Notes in Mathematics, vol. 1678 (Springer, Berlin, 1997) · Zbl 0936.70001
[60] O. Krupková, Hamiltonian field theory. J. Geom. Phys. 43, 93-132 (2002) · Zbl 1016.37033 · doi:10.1016/S0393-0440(01)00087-0
[61] O. Krupková, Variational metric structures. Publ. Math. Debr. 62, 461-495 (2003) · Zbl 1026.53041
[62] O. Krupková, Lepage forms in the calculus of variations, in Variations, Geometry and Physics (Nova Science Publishers, New York, 2008), pp. 29-56
[63] O. Krupková, Variational equations on manifolds, in Advances in Mathematics Research, vol. 9 (Nova Science Publishers, New York, 2009), pp. 201-274 · Zbl 1209.00071
[64] O. Krupková, R. Maliková, Helmholtz conditions and their generalizations. Balkan J. Geom. Appl. 15(1), 80-89 (2010) · Zbl 1227.49042
[65] O. Krupková, G.E. Prince, Lepage forms, closed 2-forms and second-order ordinary differential equations. Russ. Math. (Iz. VUZ) 51(12), 1-16 (2007) · Zbl 1298.58004
[66] O. Krupková, D.J. Saunders (eds.), Variations, Geometry and Physics (Nova Science Publishers, New York, 2009), p. 360 · Zbl 1209.58002
[67] O. Krupková, D.J. Saunders, Affine duality, and Lagrangian and Hamiltonian systems. Int. J. Geom. Methods Mod. Phys. 8, 669-697 (2011) · Zbl 1273.70023 · doi:10.1142/S0219887811005336
[68] O. Krupková, D. Smetanová, On regularization of variational problems in first-order field theory, in Proceedings of the 20th Winter School “Geometry and Physics” (Srní, 2000). Rend. Circ. Mat. Palermo (2), Suppl. No. 66 (2001), pp. 133-140 · Zbl 0979.35005
[69] O. Krupková, D. Smetanová, Legendre transformation for regularizable Lagrangians in field theory. Lett. Math. Phys. 58, 189-204 (2001) · Zbl 1005.70025 · doi:10.1023/A:1014548309187
[70] O. Krupková, D. Smetanová, Lepage equivalents of second order Euler-Lagrange forms and the inverse problem of the calculus of variations. J. Nonlin. Math. Phys. 16, 235-250 (2009) · Zbl 1170.58006 · doi:10.1142/S1402925109000194
[71] B. Kupershmidt, Geometry of jet bundles and the structure of Lagrangian and Hamiltonian formalisms, in Lecture Notes in Mathematics, vol. 775 (Springer, Berlin, 1980), pp. 162-217 · Zbl 0439.58016
[72] T. Lepage, Sur les champs géodésiques du calcul des variations. Bull. Acad. Roy. Belg. Cl. des Sci. 22, 716-729 (1936) · JFM 62.1329.01
[73] P. Libermann, C.-M. Marle, in Symplectic Geometry and Analytical Mechanics. Mathematics and Its Applications (D. Reidel, Dordrecht, 1987) · Zbl 0643.53002
[74] R. Malíková, On a generalization of Helmholtz conditions. Acta Math. Univ. Ostrav. 17, 11-21 (2009) · Zbl 1238.58001
[75] L. Mangiarotti, M. Modugno, Fibred spaces, jet spaces and connections for field theories, in Proceedings of the Meeting ‘Geometry and Physics’, 1982, Florence (Pitagora, Bologna, 1982), pp. 135-165 · Zbl 0539.53026
[76] J.E. Marsden, S. Pekarsky, S. Shkoller, M. West, Variational methods, multisymplectic geometry and continuum mechanics. J. Geom. Phys. 38, 253-284 (2001) · Zbl 1007.74018 · doi:10.1016/S0393-0440(00)00066-8
[77] P.J. Olver, Equivalence and the Cartan form. Acta Appl. Math. 31, 99-136 (1993) · Zbl 0794.49041 · doi:10.1007/BF00990539
[78] M. Palese, O. Rossi, E. Winterroth, J. Musilová, Variational sequences, representation sequences and applications in physics, 61 pp. ArXiv:1508.01752v1 [math-ph]; SIGMA 12, 045 45 pp. (2016) · Zbl 1347.70043
[79] H. Poincaré, Les méthodes nouvelles de la Mécanique céleste, vol. 3 (Gauthier-Villars, Paris, 1899) · JFM 30.0834.08
[80] O. Rossi, Homogeneous differential equations and the inverse problem of the calculus of variations. Publ. Math. Debr. 84, 165-188 (2014) · Zbl 1299.49054 · doi:10.5486/PMD.2014.5990
[81] O. Rossi, Geometry of variational partial differential equations and Hamiltonian systems, in Geometry of Jets and Fields, Banach Center Publications, vol. 110 (Inst. of Math., Polish of Academy of Sciences, Warszawa, 2016), pp. 219-237 · Zbl 1404.70065
[82] O. Rossi, D.J. Saunders, Dual jet bundles, Hamiltonian systems and connections. Diff. Geom. Appl. 35, 178-198 (2014) · Zbl 1319.58016 · doi:10.1016/j.difgeo.2014.03.010
[83] O. Rossi, D. Saunders, Lagrangian and Hamiltonian duality. J. Math. Sci. 218, 813-816 (2016) · Zbl 1368.70026 · doi:10.1007/s10958-016-3069-6
[84] W. Sarlet, Geometrical structures related to second-order equations, in Differential Geometry and Its Applications, ed. by D. Krupka, A. Švec. Conference Proceedings, Brno, 1986 (D. Reidel, Dordrecht, 1986), pp. 279-288 · Zbl 0635.58017
[85] D.J. Saunders, Jet fields, connections and second-order differential equations. J. Phys. A Math. Gen. 20, 3261-3270 (1987) · Zbl 0627.70013 · doi:10.1088/0305-4470/20/11/029
[86] D.J. Saunders, The Geometry of Jet Bundles. London Mathematical Society Lecture Note Series, vol. 142 (Cambridge University Press, Cambridge, 1989) · Zbl 0665.58002
[87] D.J. Saunders, The regularity of variational problems. Contemp. Math. 132, 573-593 (1992) · Zbl 0785.58020 · doi:10.1090/conm/132/1188458
[88] D.J. Saunders, A new approach to the nonlinear connection associated with second order (and higher-order) differential equation fields. J. Phys. A Math. Gen. 30, 1739-1743 (1997) · Zbl 1001.34501 · doi:10.1088/0305-4470/30/5/034
[89] E. Tonti, Variational formulation of nonlinear differential equations I, II. Bull. Acad. Roy. Belg. Cl. Sci. 55, 137-165, 262-278 (1969) · Zbl 0182.11402
[90] M.M. Vainberg, Variational Methods in the Theory of Nonlinear Operators (GITL, Moscow, 1959) (in Russian) · Zbl 0094.10801
[91] A.M. Vinogradov, A spectral sequence associated with a non-linear differential equation, and algebro-geometric foundations of Lagrangian field theory with constraints. Soviet Math. Dokl. 19, 144-148 (1978) · Zbl 0406.58015
[92] A. Weinstein, Lectures on Symplectic Manifolds. CBMS Regional Conference Series in Mathematics, vol. 29 (American Mathematical Society, Providence, 1977), 48 pp. · Zbl 0406.53031
[93] R.O. Wells, Differential Analysis on Complex Manifolds (Springer, Berlin, 1980) · Zbl 0435.32004 · doi:10.1007/978-1-4757-3946-6
[94] E.T. Whittaker, A Treatise on Analytical Dynamics of Particles and Rigid Bodies (The University Press, Cambridge, 1917)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.