×

Lepage forms, closed 2-forms and second-order ordinary differential equations. (English) Zbl 1298.58004

Russ. Math. 51, No. 12, 1-16 (2007) and Izv. Vyssh. Uchebn. Zaved., Mat. 2007, No. 12, 3-18 (2007).
Summary: Lepage 2-forms appear in the variational sequence as representatives of the classes of 2-forms. In the theory of ordinary differential equations on jet bundles they are used to construct exterior differential systems associated with the equations and to study solutions, and help to solve the inverse problem of the calculus of variations: since variational equations are characterized by Lepage 2-forms that are closed. In this paper, a general setting for Lepage forms in the variational sequence is presented, and Lepage 2-forms in the theory of second-order differential equations in general and of variational equations in particular, are investigated in detail.

MSC:

58A20 Jets in global analysis
34A26 Geometric methods in ordinary differential equations
Full Text: DOI

References:

[1] J. E. Aldridge, ”Aspects of the Inverse Problem in the Calculus of Variations,” Ph. D. Thesis (La Trobe University, Australia, 2003).
[2] I. Anderson, ”Aspects of the Inverse Problem to the Calculus of Variations,” Arch. Math. (Brno) 24, 181–202 (1988). · Zbl 0674.58017
[3] I. Anderson, ”The Variational Bicomplex,” (Technical Report, Utah State University, 1989).
[4] M. Crampin, G. E. Prince, and G. Thompson, ”A Geometric Version of the Helmholtz Conditions in Time Dependent Lagrangian Dynamics,” J. Phys. A: Math. Gen. 17, 1437–1447 (1984). · Zbl 0545.58020 · doi:10.1088/0305-4470/17/7/011
[5] M. Crampin, W. Sarlet, E. Martinez, G. B. Byrnes and G. E. Prince, ”Toward a Geometrical Understanding of Douglas’ Solution of the Inverse Problem in the Calculus of Variations,” Inverse Problems, 10, 245–260 (1994). · Zbl 0826.58015 · doi:10.1088/0266-5611/10/2/005
[6] J. Douglas, ”Solution of the Inverse Problem of the Calculus of Variations,” Trans. Amer. Math. Soc. 50, 71–128 (1941). · JFM 67.1038.01 · doi:10.1090/S0002-9947-1941-0004740-5
[7] H. Helmholtz, ”Über der physikalische Bedeutung des Princips der kleinsten Wirkung,” J. Reine Angew. Math. 100, 137–166 (1887). · JFM 18.0941.01
[8] M. Jerie and G. E. Prince, ”Jacobi Fields and Linear Connections for Arbitrary Second-Order ODEs,” J. Geom. Phys. 43, 351–370 (2002). · Zbl 1039.53041 · doi:10.1016/S0393-0440(02)00030-X
[9] L. Klapka, ”Euler-Lagrange Expressions and Closed Two-Forms in Higher Order Mechanics,” in Proceedings of Conference on Differential Geometry and Applications ”Geometrical Methods in Physics,” Nové Město na Moravě, 1983, Czechoslovakia, Ed. by D. Krupka and J. E. Purkyně (Univ. Brno, Czechoslovakia, 1984), Vol. 2, pp. 149–153.
[10] M. Krbek and J. Musilová, ”Representation of the Variational Sequence,” Rep. Math. Phys. 51, 251–258 (2003). · Zbl 1046.58005 · doi:10.1016/S0034-4877(03)80018-6
[11] D. Krupka, ”Some Geometric Aspects of Variational Problems in Fibered Manifolds,” Folia Fac. Sci. Nat. Univ. Purk. Brunensis, Physica 14, Brno, Czechoslovakia, 1973; ArXiv:math-ph/0110005.
[12] D. Krupka, ”Lepagean Forms in Higher Order Variational Theory,” in Proceedings of IUTAM-ISIMM Symposium ”Modern Developmens in Analytical Mechanics I: Geometrical Dynamics,” Torino, Italy, 1982 (Accad. Sci. Torino, Torino, 1983), pp. 197–238.
[13] D. Krupka, ”Variational Sequences on Finitie Order Jet Spaces,” in Proceedings of Conference, Brno, Czechoslovakia, 1989, Ed. by J. Janyška and D. Krupka (World Scientific, Singapore, 1990), pp. 236–254. · Zbl 0813.58014
[14] D. Krupka, ”Variational Sequences in Mechanics,” Calc. Var. 5, 557–583 (1997). · Zbl 0892.58001 · doi:10.1007/s005260050079
[15] D. Krupka, ”Global Variational Principles: Foundations and Current Problems,” in AIP Conference Proceedings 729 ”Global Analysis and Applied Mathematics” (American Institute of Physics, 2004), pp. 3–18. · Zbl 1121.58019
[16] D. Krupka, ”Global Variational Theory in Fibred Spaces,” in Handbook of Global Analysis (Elsevier, 2007), pp. 755–839.
[17] D. Krupka and J. Šeděnková, ”Variational Sequences and Lepagean Forms,” in Proceedings of Conference ”Differential Geometry and its Applications,” Prague, 2004, Ed. by J. Bureš, O. Kowalski, D. Krupka, and J. Slovák (Charles Univ., Prague, Czech Republic, 2005), pp. 605–615.
[18] O. Krupková, ”Lepagean 2-Forms in Higher Order Hamiltonian Mechanics, I. Regularity,” Arch. Math. (Brno) 22, 97–120 (1986). · Zbl 0637.58002
[19] O. Krupková, ”Lepagean 2-Forms in Higher Order Hamiltonian Mechanics, II. Inverse Problem,” Arch. Math. (Brno) 23, 155–170 (1987). · Zbl 0651.58010
[20] O. Krupková, ”Variational Analysis on Fibered Manifolds Over One-Dimensional Bases,” Ph. D. Thesis (Silesian University, Opava et Charles University, Prague, 1992).
[21] O. Krupková, ”A Geometric Setting for Higher-Order Dirac-Bergmann Theory of Constraints,” J. Math. Phys. 35, 6557–6576 (1994). · Zbl 0823.70016 · doi:10.1063/1.530691
[22] O. Krupková, ”Higher-Order Constrained Systems on Fibered Manifolds: An Exterior Differential Systems Approach,” in Proceedings of Colloqium on Differential Geometry ”New Developments in Differential Geometry,” Debrecen, 1994, Ed. by L. Tamássy and J. Szenthe (Kluwer, Dordrecht, 1996), pp. 255–278. · Zbl 0848.58023
[23] O. Krupková, The Geometry of Ordinary Variational Equations, Lecture Notes in Math. 1678 (Springer, Berlin, 1997). · Zbl 0936.70001
[24] O. Krupková, ”Mechanical Systems with Non-Holonomic Constraints,” J. Math. Phys. 38, 5098–5126 (1997). · Zbl 0926.70018 · doi:10.1063/1.532196
[25] O. Krupková, ”Differential Systems in Higher-Order Mechanics,” in Proceedings of the Seminar on Differential Geometry, Ed. by D. Krupka (Mathematical Publications 2, Silesian University, Opava, 2000), pp. 87–130. · Zbl 1034.70010
[26] O. Krupková, ”The Geometry of Variational Equations,” in AIP Conference Proceedings 729 ”Global Analysis and Applied Mathematics” (American Institute of Physics, 2004), pp. 19–38. · Zbl 1121.58020
[27] O. Krupková and G. Prince, ”Second Order Ordinary Differential Equations in Jet Bundles and the Inverse Problem of the Calculus of Variations,” in Handbook on Global Analysis (Elsevier, 2007), pp. 841–908.
[28] E. Martinez, J. F. Cariñena, and W. Sarlet, ”Derivations of Differential Forms Along the Tangent Bundle Projection,” Diff. Geom. Appl. 2, 17–43 (1992). · Zbl 0748.58002 · doi:10.1016/0926-2245(92)90007-A
[29] E. Martinez, J. F. Cariñena, and W. Sarlet, ”Derivations of Differential Forms Along the Tangent Bundle Projection II,” Diff. Geom. Appl. 3, 1–29 (1993). · Zbl 0770.53018 · doi:10.1016/0926-2245(93)90020-2
[30] E. Massa and E. Pagani, ”Jet Bundle Geometry, Dynamical Connections, and the Inverse Problem of Lagrangian Mechanics,” Ann. Inst. Henri Poincaré, Phys. Theor. 61, 17–62 (1994). · Zbl 0813.70004
[31] T. Mestdag and W. Sarlet, ”The Berwald-Type Connection Associated to Time-Dependent Second-Order Differential Equations,” Houston J. Math. 27, 763–797 (2001). · Zbl 1003.58005
[32] W. Sarlet, ”The Helmholtz Conditions Revisited. A New Approach to the Inverse Problem of Lagrangian Dynamics,” J. Phys. A: Math. Gen. 15, 1503–1517 (1982). · Zbl 0537.70018 · doi:10.1088/0305-4470/15/5/013
[33] W. Sarlet, G. Thompson, and G. E. Prince, ”The Inverse Problem of the Calculus of Variations: The Use of Geometrical Calculus in Douglas’ Analysis,” Trans. Amer. Math. Soc. 354, 2897–2919 (2002). · Zbl 1038.37044 · doi:10.1090/S0002-9947-02-02994-X
[34] W. Sarlet, A. Vandecasteele, F. Cantrijn and E. Martinez, ”Derivations of Forms Along a Map: The Framework for Time-Dependent Second-Order Equations,” Diff. Geom. Appl. 5, 171–203 (1995). · Zbl 0831.58003 · doi:10.1016/0926-2245(95)00013-T
[35] D. J. Saunders, The Geometry of Jet Bundles (Cambridge University Press, Cambridge, 1989). · Zbl 0665.58002
[36] O. Štěpánková, ”The Inverse Problem of the Calculus of Variations in Mechanics,” Ph. D. Thesis (Charles University, Prague, 1984).
[37] F. Takens, ”A Global Version of the Inverse Problem of the Calculus of Variations,” J. Diff. Geom. 14, 543–562 (1979). · Zbl 0463.58015 · doi:10.4310/jdg/1214435235
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.