×

Unified convergence analysis of numerical schemes for a miscible displacement problem. (English) Zbl 1411.65109

Summary: This article performs a unified convergence analysis of a variety of numerical methods for a model of the miscible displacement of one incompressible fluid by another through a porous medium. The unified analysis is enabled through the framework of the gradient discretisation method for diffusion operators on generic grids. We use it to establish a novel convergence result in \(L^\infty (0,T; L^2(\Omega ))\) of the approximate concentration using minimal regularity assumptions on the solution to the continuous problem. The convection term in the concentration equation is discretised using a centred scheme. We present a variety of numerical tests from the literature, as well as a novel analytical test case. The performance of two schemes is compared on these tests; both are poor in the case of variable viscosity, small diffusion and medium to small time steps. We show that upstreaming is not a good option to recover stable and accurate solutions, and we propose a correction to recover stable and accurate schemes for all time steps and all ranges of diffusion.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs

References:

[1] I. Aavatsmark, T. Barkve, O. Boe, and T. Mannseth. Discretization on non-orthogonal, quadrilateral grids for inhomogeneous, anisotropic media. J. Comput. Phys., 127(1):2-14, 1996. · Zbl 0859.76048 · doi:10.1006/jcph.1996.0154
[2] B. Amaziane and M. El Ossmani. Convergence analysis of an approximation to miscible fluid flows in porous media by combining mixed finite element and finite volume methods. Numer. Methods Partial Differential Equations, 24(3):799-832, 2008. · Zbl 1137.76033 · doi:10.1002/num.20291
[3] B. Andreianov, F. Boyer, and F. Hubert. Discrete duality finite volume schemes for Leray-Lions-type elliptic problems on general 2D meshes. Numer. Methods Partial Differential Equations, 23(1):145-195, 2007. · Zbl 1111.65101 · doi:10.1002/num.20170
[4] S. Bartels, M. Jensen, and R. Müller. Discontinuous Galerkin finite element convergence for incompressible miscible displacement problems of low regularity. SIAM J. Numer. Anal., 47(5):3720-3743, 2009. · Zbl 1410.76154 · doi:10.1137/070712079
[5] L. Beirão da Veiga, J. Droniou, and G. Manzini. A unified approach for handling convection terms in finite volumes and mimetic discretization methods for elliptic problems. IMA J. Numer. Anal., 31(4):1357-1401, 2011. · Zbl 1263.65102 · doi:10.1093/imanum/drq018
[6] F. Brezzi, A. Buffa, and K. Lipnikov. Mimetic finite differences for elliptic problems. M2AN Math. Model. Numer. Anal., 43(2):277-295, 2009. · Zbl 1177.65164 · doi:10.1051/m2an:2008046
[7] F. Brezzi and M. Fortin. Mixed and hybrid finite element methods, volume 15 of Springer Series in Computational Mathematics. Springer-Verlag, New York, 1991. · Zbl 0788.73002
[8] F. Brezzi, K. Lipnikov, and V. Simoncini. A family of mimetic finite difference methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci., 15(10):1533-1551, 2005. · Zbl 1083.65099 · doi:10.1142/S0218202505000832
[9] M.A. Celia, T.F. Russell, I. Herrera, and R.E. Ewing. An Eulerian-Lagrangian localized adjoint method for the advection-diffusion equation. Advances in Water Resources, 13(4):187-206, 1990. · doi:10.1016/0309-1708(90)90041-2
[10] C. Chainais-Hillairet and J. Droniou. Convergence analysis of a mixed finite volume scheme for an elliptic-parabolic system modeling miscible fluid flows in porous media. SIAM J. Numer. Anal., 45(5):2228-2258, 2007. · Zbl 1146.76034 · doi:10.1137/060657236
[11] C. Chainais-Hillairet, S. Krell, and A. Mouton. Study of discrete duality finite volume schemes for the Peaceman model. SIAM J. Sci. Comput., 35(6):A2928-A2952, 2013. · Zbl 1292.76044 · doi:10.1137/130910555
[12] C. Chainais-Hillairet, S. Krell, and A. Mouton. Convergence analysis of a DDFV scheme for a system describing miscible fluid flows in porous media. Numer. Methods Partial Differential Equations, 31(3):723-760, 2015. · Zbl 1325.76128 · doi:10.1002/num.21913
[13] G. Chavent and J. Jaffré. Mathematical Models and Finite Elements for Reservoir Simulation. Studies in Mathematics and its Applications, Vol. 17. North-Holland, Amsterdam, 1986. · Zbl 0603.76101
[14] Z. Chen and R. Ewing. Mathematical analysis for reservoir models. SIAM J. Math. Anal., 30(2):431-453, 1999. · Zbl 0922.35074 · doi:10.1137/S0036141097319152
[15] P. G. Ciarlet and J.-L. Lions, editors. Handbook of numerical analysis. Vol. II. Handbook of Numerical Analysis, II. North-Holland, Amsterdam, 1991. Finite element methods. Part 1. · Zbl 0712.65091
[16] Y. Coudière and F. Hubert. A 3D discrete duality finite volume method for nonlinear elliptic equations. SIAM J. Sci. Comput., 33(4):1739-1764, 2011. · Zbl 1243.35061 · doi:10.1137/100786046
[17] M. Crouzeix and P.-A. Raviart. Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge, 7(R-3):33-75, 1973. · Zbl 0302.65087
[18] B.L. Darlow, R.E. Ewing, and M.F. Wheeler. Mixed finite element method for miscible displacement problems in porous media. Soc. Pet. Eng. J., 24(04):391-398, 1984. · doi:10.2118/10501-PA
[19] D. Antonio Di Pietro and A. Ern. Mathematical aspects of discontinuous Galerkin methods, volume 69 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer, Heidelberg, 2012. · Zbl 1231.65209
[20] J. Douglas, R.E. Ewing, and M.F. Wheeler. The approximation of the pressure by a mixed method in the simulation of miscible displacement. RAIRO Anal. Numér., 17(1):17-33, 1983. · Zbl 0516.76094 · doi:10.1051/m2an/1983170100171
[21] J. Douglas, Jr. The numerical solution of a compositional model in petroleum reservoir engineering. In Numerical Solution of Field Problems in Continuum Physics (Proc. Sympos. Appl. Math., Durham, N.C., 1968), SIAM-AMS Proc., Vol. II, pages 54-59. Amer. Math. Soc., Providence, R.I., 1970. · Zbl 0218.76093
[22] J. Douglas, Jr. Finite difference methods for two-phase incompressible flow in porous media. SIAM J. Numer. Anal., 20(4):681-696, 1983. · Zbl 0519.76107 · doi:10.1137/0720046
[23] J. Droniou. Intégration et espaces de sobolev à valeurs vectorielles. Polycopiés de l’Ecole Doctorale de Mathématiques-Informatique de Marseille, available at hal.archives-ouvertes.fr/hal-01382368, 2001.
[24] J. Droniou. Finite volume schemes for diffusion equations: introduction to and review of modern methods. Math. Models Methods Appl. Sci., 24(8):1575-1619, 2014. · Zbl 1291.65319 · doi:10.1142/S0218202514400041
[25] J. Droniou and R. Eymard. A mixed finite volume scheme for anisotropic diffusion problems on any grid. Numer. Math., 105(1):35-71, 2006. · Zbl 1109.65099 · doi:10.1007/s00211-006-0034-1
[26] J. Droniou and R. Eymard. Uniform-in-time convergence of numerical methods for non-linear degenerate parabolic equations. Numer. Math., 132(4):721-766, 2016. · Zbl 1342.65180 · doi:10.1007/s00211-015-0733-6
[27] J. Droniou, R. Eymard, and P. Feron. Gradient Schemes for Stokes problem. IMA J. Numer. Anal., 36(4):1636-1669, 2016. · Zbl 1433.76080 · doi:10.1093/imanum/drv061
[28] J. Droniou, R. Eymard, T. Gallouët, C. Guichard, and R. Herbin. The gradient discretisation method. Mathematics & Applications. Springer, Heidelberg, 2018. To appear. https://hal.archives-ouvertes.fr/hal-01382358. · Zbl 1435.65005
[29] J. Droniou, R. Eymard, T. Gallouët, and R. Herbin. A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods. Math. Models Methods Appl. Sci., 20(2):265-295, 2010. · Zbl 1191.65142 · doi:10.1142/S0218202510004222
[30] J. Droniou, R. Eymard, T. Gallouët, and R. Herbin. Gradient schemes: a generic framework for the discretisation of linear, nonlinear and nonlocal elliptic and parabolic equations. Math. Models Methods Appl. Sci. (M3AS), 23(13):2395-2432, 2013. · Zbl 1281.65136
[31] J. Droniou, R. Eymard, and R. Herbin. Gradient schemes: generic tools for the numerical analysis of diffusion equations. ESAIM Math. Model. Numer. Anal., 50(3):749-781, 2016. · Zbl 1346.65042 · doi:10.1051/m2an/2015079
[32] J. Droniou and K.S. Talbot. On a miscible displacement model in porous media flow with measure data. SIAM J. Math. Anal., 46(5):3158-3175, 2014. · Zbl 1323.35100 · doi:10.1137/130949294
[33] Jérôme Droniou and Kyle S. Talbot. Analysis of miscible displacement through porous media with vanishing molecular diffusion and singular wells. 2018. · Zbl 1390.35265
[34] M.G. Edwards and C.F. Rogers. Finite volume discretization with imposed flux continuity for the general tensor pressure equation. Comput. Geosci., 2(4):259-290, 1998. · Zbl 0945.76049 · doi:10.1023/A:1011510505406
[35] A. Ern and J.-L. Guermond. Theory and practice of finite elements, volume 159 of Applied Mathematical Sciences. Springer-Verlag, New York, 2004. · Zbl 1059.65103
[36] Ewing, RE; Ewing, RE (ed.), Problems arising in the modeling of processes for hydrocarbon recovery, 3-34 (1983), Philadelphia · Zbl 0538.76099 · doi:10.1137/1.9781611971071.ch1
[37] R.E. Ewing, T.F. Russell, and M.F. Wheeler. Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics. Comput. Methods Appl. Mech. Engrg., 47(1-2):73-92, 1984. · Zbl 0545.76131 · doi:10.1016/0045-7825(84)90048-3
[38] R.E. Ewing and M.F. Wheeler. Galerkin methods for miscible displacement problems in porous media. SIAM J. Numer. Anal., 17(3):351-365, 1980. · Zbl 0458.76092 · doi:10.1137/0717029
[39] R.E. Ewing and M.F. Wheeler. Galerkin methods for miscible displacement problems with point sources and sinks—unit mobility ratio case. In Mathematical methods in energy research (Laramie, Wyo., 1982/1983), pages 40-58. SIAM, Philadelphia, PA, 1984. · Zbl 0551.76079
[40] R. Eymard, P. Feron, and C. Guichard. Family of convergent numerical schemes for the incompressible Navier-Stokes equations. Mathematics and Computers in Simulation, 144(C):196-218, 2018. · Zbl 1482.76095
[41] R. Eymard, T. Gallouët, C. Guichard, R. Herbin, and R. Masson. TP or not TP, that is the question. Comput. Geosci., 18(3-4):285-296, 2014. · Zbl 1378.76118 · doi:10.1007/s10596-013-9392-9
[42] R. Eymard, T. Gallouët, and R. Herbin. Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces. IMA J. Numer. Anal., 30(4):1009-1043, 2010. · Zbl 1202.65144 · doi:10.1093/imanum/drn084
[43] R. Eymard, C. Guichard, and R. Herbin. Small-stencil 3D schemes for diffusive flows in porous media. ESAIM Math. Model. Numer. Anal., 46(2):265-290, 2012. · Zbl 1271.76324 · doi:10.1051/m2an/2011040
[44] R. Eymard, C. Guichard, and R. Masson. Grid orientation effect in coupled finite volume schemes. IMA J. Numer. Anal., 33(2):582-608, 2013. · Zbl 1328.76046 · doi:10.1093/imanum/drs016
[45] P. Fabrie and T. Gallouët. Modelling wells in porous media flow. Math. Models Methods Appl. Sci., 10(5):673-709, 2000. · Zbl 1018.76044 · doi:10.1142/S0218202500000367
[46] X. Feng. On existence and uniqueness results for a coupled system modeling miscible displacement in porous media. J. Math. Anal. Appl., 194(3):883-910, 1995. · Zbl 0856.35030 · doi:10.1006/jmaa.1995.1334
[47] X. Feng. Recent developments on modeling and analysis of flow of miscible fluids in porous media. In Fluid flow and transport in porous media: mathematical and numerical treatment (South Hadley, MA, 2001), volume 295 of Contemp. Math., pages 229-240. Amer. Math. Soc., Providence, RI, 2002. · Zbl 1033.35088
[48] Raphaèle Herbin and Florence Hubert. Benchmark on discretization schemes for anisotropic diffusion problems on general grids. In Finite volumes for complex applications V, pages 659-692. ISTE, London, 2008. · Zbl 1422.65314
[49] F. Hermeline. Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes. Comput. Methods Appl. Mech. Engrg., 192(16-18):1939-1959, 2003. · Zbl 1037.65118 · doi:10.1016/S0045-7825(02)00644-8
[50] J. Li, B. Rivière, and N. Walkington. Convergence of a high order method in time and space for the miscible displacement equations. ESAIM Math. Model. Numer. Anal., 49(4):953-976, 2015. · Zbl 1327.65176 · doi:10.1051/m2an/2014059
[51] R. J. Moitsheki, P. Broadbridge, and M. P. Edwards. Symmetry solutions for transient solute transport in unsaturated soils with realistic water profile. Transp. Porous Media, 61(1):109-125, 2005. · doi:10.1007/s11242-004-6799-8
[52] R. J. Moitsheki, P. Broadbridge, and M. P. Edwards. Group invariant solutions for two dimensional solute transport under realistic water flows. Quaest. Math., 29(1):73-83, 2006. · Zbl 1101.35064 · doi:10.2989/16073600609486150
[53] D.W. Peaceman. Improved treatment of dispersion in numerical calculation of multidimensional miscible displacement. Soc. Pet. Eng. J., 6(3):213-216, 1966. · doi:10.2118/1362-PA
[54] D.W. Peaceman. Fundamentals of Numerical Reservoir Simulation. Elsevier, New York, 1977.
[55] D.W. Peaceman and H.H. Rachford Jr. Numerical calculation of multidimensional miscible displacement. Soc. Pet. Eng. J., 2(4):327-339, 1962. · doi:10.2118/471-PA
[56] B.M. Rivière and N.J. Walkington. Convergence of a discontinuous Galerkin method for the miscible displacement equation under low regularity. SIAM J. Numer. Anal., 49(3):1085-1110, 2011. · Zbl 1414.76036 · doi:10.1137/090758908
[57] T.F. Russell. Finite elements with characteristics for two-component incompressible miscible displacement. In Proceedings of the 6th SPE Symposium on Reservoir Simulation, pages 123-135, New Orleans, 1982. Society of Petroleum Engineers.
[58] T.F. Russell. Time stepping along characteristics with incomplete iteration for a galerkin approximation of miscible displacement in porous media. SIAM J. Numer. Anal., 22(5):970-1013, 1985. · Zbl 0594.76087 · doi:10.1137/0722059
[59] T.F. Russell and M.F. Wheeler. Finite element and finite difference methods for continuous flows in porous media. In The mathematics of reservoir simulation, volume 1 of Frontiers in Applied Mathematics, pages 35-106. SIAM, Philadelphia, 1983. · Zbl 0572.76089
[60] S. Sun, B. Rivière, and M.F. Wheeler. A combined mixed finite element and discontinuous Galerkin method for miscible displacement problem in porous media. In Recent progress in computational and applied PDEs (Zhangjiajie, 2001), pages 323-351. Kluwer/Plenum, New York, 2002. · Zbl 1060.76072
[61] H. Wang, D. Liang, R.E. Ewing, S.L. Lyons, and G. Qin. An approximation to miscible fluid flows in porous media with point sources and sinks by an Eulerian-Lagrangian localized adjoint method and mixed finite element methods. SIAM J. Sci. Comput., 22(2):561-581, 2000. · Zbl 0988.76054 · doi:10.1137/S1064827598349215
[62] M.F. Wheeler and B.L. Darlow. Interior penalty Galerkin procedures for miscible displacement problems in porous media. In Computational methods in nonlinear mechanics (Proc. Second Internat. Conf., Univ. Texas, Austin, Tex., 1979), pages 485-506. North-Holland, Amsterdam-New York, 1980. · Zbl 0444.76081
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.