×

Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes. (English) Zbl 1037.65118

From the author’s abstract: A new finite volume method is presented for discretizing diffusion operators with discontinuous tensor coefficients. The main advantages of this method is that arbitrary distorted meshes can be used without the numerical results being altered. The matrices that need to be inverted are positive definite, so the most powerful linear solvers can be applied. Moreover, the numerical experiments show that the method is second-order accurate. The method has been tested on a few elliptic and parabolic equations.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35K15 Initial value problems for second-order parabolic equations
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
35R05 PDEs with low regular coefficients and/or low regular data
Full Text: DOI

References:

[1] Ciarlet, P. G., The Finite Element Method for Elliptic Problems (1978), North Holland: North Holland Amsterdam · Zbl 0445.73043
[2] Faille, I., A control volume method to solve an elliptic equation on a two-dimensional irregular meshing, Comp. Methods Appl. Mech. Engrg., 100, 275-290 (1992) · Zbl 0761.76068
[3] Ewing, D. J.; Fawkes, A. F.; Griffiths, J. R., Rules governing the numbers of nodes and elements in a finite element mesh, Int. J. Numer. Methods Engrg., 2, 597-601 (1970)
[4] George, P. L.; Borouchaki, H., Delaunay Triangulation and Meshing. Applications to Finite Elements (1998), Hermes: Hermes Paris · Zbl 0908.65143
[5] Morel, J. E.; Dendy, J. E.; Hall, M. L.; White, S. W., A cell centered Lagrangian-mesh diffusion differencing scheme, J. Comput. Phys., 103, 286-299 (1992) · Zbl 0763.76052
[6] Hermeline, F., Two coupled particle-finite volume methods using Delaunay-Voronoi meshes for the approximation of Vlasov-Poisson and Vlasov-Maxwell equations, J. Comput. Phys., 106, 1, 1-18 (1993) · Zbl 0777.65070
[7] Hermeline, F., Une méthode de volumes finis pour les équations elliptiques du second ordre, C.R. Acad. Sci. Paris, 326, 1, 1433-1436 (1998) · Zbl 0912.65104
[8] Hermeline, F., A finite volume method for the approximation of diffusion operators on distorted meshes, J. Comput. Phys., 160, 481-499 (2000) · Zbl 0949.65101
[9] Ikeda, T., (Maximum Principle in Finite Element Models for Convection-Diffusion Phenomena. Maximum Principle in Finite Element Models for Convection-Diffusion Phenomena, Lecture Notes in Numerical and Applied Analysis, vol. 4 (1983), North-Holland: North-Holland Amsterdam/Oxford/New York) · Zbl 0508.65049
[10] Kershaw, D. S., Differencing of the diffusion equation in Lagrangian hydrodynamic codes, J. Comput. Phys., 39, 375-395 (1981) · Zbl 0467.76080
[11] Lascaux, P.; Theodor, R., Analyse numérique matricielle appliquée à l’art de l’ingénieur (1986), Masson · Zbl 0601.65016
[12] Overmars, M.; de Berg, M.; van Kreveld, M.; Schwarzkopf, O., Computational Geometry (1997), Springer-Verlag: Springer-Verlag Berlin/New York · Zbl 0877.68001
[13] MacNeal, R. H., An asymmetric finite difference network, Q. Appl. Math, 11, 295-310 (1953) · Zbl 0053.26304
[14] Shashkov, M.; Steinberg, S., Support-operator finite-difference algorithms for general elliptic problems, J. Comput. Phys., 118, 131-151 (1995) · Zbl 0824.65101
[15] Shashkov, M.; Steinberg, S., Solving diffusion equations with rough coefficients in rough grids, J. Comput. Phys., 129, 383-405 (1996) · Zbl 0874.65062
[16] C.H. Tong, A comparative study of preconditioned Lanczos methods for nonsymmetric linear systems, Sandia report SAND91-8240 UC-404, January 1992, unpublished; C.H. Tong, A comparative study of preconditioned Lanczos methods for nonsymmetric linear systems, Sandia report SAND91-8240 UC-404, January 1992, unpublished
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.