×

Quantum gravity kinematics from extended TQFTs. (English) Zbl 1512.81079

Summary: In this paper, we show how extended topological quantum field theories (TQFTs) can be used to obtain a kinematical setup for quantum gravity, i.e. a kinematical Hilbert space together with a representation of the observable algebra including operators of quantum geometry. In particular, we consider the holonomy-flux algebra of \((2+1)\)-dimensional Euclidean loop quantum gravity, and construct a new representation of this algebra that incorporates a positive cosmological constant. The vacuum state underlying our representation is defined by the Turaev-Viro TQFT. This vacuum state can be thought of as being peaked on connections with homogeneous curvature. We therefore construct here a generalization, or more precisely a quantum deformation at root of unity, of the previously introduced SU(2) BF representation. The extended Turaev-Viro TQFT provides a description of the excitations on top of the vacuum. These curvature and torsion excitations are classified by the Drinfeld center category of the quantum deformation of SU(2), and are essential in order to allow for a representation of the holonomies and fluxes. The holonomies and fluxes are generalized to ribbon operators which create and interact with the excitations. These excitations agree with the ones induced by massive and spinning particles, and therefore the framework presented here allows automatically for a description of the coupling of such matter to \((2+1)\)-dimensional gravity with a cosmological constant. The new representation constructed here presents a number of advantages over the representations which exist so far. In particular, it possesses a very useful finiteness property which guarantees the discreteness of spectra for a wide class of quantum (intrinsic and extrinsic) geometrical operators. Also, the notion of basic excitations leads to a so-called fusion basis which offers exciting possibilities for the construction of states with interesting global properties, as well as states with certain stability properties under coarse graining. In addition, the work presented here showcases how the framework of extended TQFTs, as well as techniques from condensed matter, can help design new representations, and construct and understand the associated notion of basic excitations. This is essential in order to find the best starting point for the construction of the dynamics of quantum gravity, and will enable the study of possible phases of spin foam models and group field theories from a new perspective.

MSC:

81V17 Gravitational interaction in quantum theory
81T45 Topological field theories in quantum mechanics
57R56 Topological quantum field theories (aspects of differential topology)

References:

[1] Rovelli C 2004 Quantum Gravity (Cambridge: Cambridge University Press) · Zbl 1091.83001 · doi:10.1017/CBO9780511755804
[2] Ashtekar A and Lewandowski J 2004 Background independent quantum gravity: a status report Class. Quantum Grav.21 R53 · Zbl 1077.83017 · doi:10.1088/0264-9381/21/15/R01
[3] Thiemann T 2007 Introduction to Modern Canonical Quantum General Relativity (Cambridge: Cambridge University Press) · Zbl 1129.83004 · doi:10.1017/CBO9780511755682
[4] Baez J C 1998 Spin foam models Class. Quantum Grav.15 1827 · Zbl 0932.83014 · doi:10.1088/0264-9381/15/7/004
[5] Oriti D 2003 Spin foam models of quantum spacetime arXiv:gr-qc/0311066
[6] Perez A 2013 The spin foam approach to quantum gravity Living Rev. Relativ.16 3 · Zbl 1320.83008 · doi:10.12942/lrr-2013-3
[7] Alexandrov S, Geiller M and Noui K 2012 Spin foams and canonical quantization, invited review for SIGMA special issue loop quantum gravity and cosmology SIGMA8 055 · Zbl 1270.83018 · doi:10.3842/SIGMA.2012.055
[8] Ashtekar A 1986 New variables for classical and quantum gravity Phys. Rev. Lett.57 2244 · doi:10.1103/PhysRevLett.57.2244
[9] Ashtekar A 1987 New Hamiltonian formulation of general relativity Phys. Rev. D 36 1587 · doi:10.1103/PhysRevD.36.1587
[10] Barbero J F 1995 Real Ashtekar variables for Lorentzian signature spacetimes Phys. Rev. D 51 5507 · doi:10.1103/PhysRevD.51.5507
[11] Immirzi G 1997 Real and complex connections for canonical gravity Class. Quantum Grav.14 L177 · Zbl 0887.53059 · doi:10.1088/0264-9381/14/10/002
[12] Ashtekar A and Isham C J 1992 Representations of the holonomy algebras of gravity and non-Abelian gauge theories Class. Quantum Grav.9 1433 · Zbl 0773.53033 · doi:10.1088/0264-9381/9/6/004
[13] Ashtekar A and Lewandowski J 1994 Representation theory of analytic holonomy C* algebras Knots and Quantum Gravity ed J Baez (Oxford: Oxford University Press)
[14] Ashtekar A and Lewandowski J 1995 Projective techniques and functional integration for gauge theories J. Math. Phys.36 2170 · Zbl 0844.58009 · doi:10.1063/1.531037
[15] Ashtekar A and Lewandowski J 1995 Differential geometry on the space of connections via graphs and projective limits J. Geom. Phys.17 191 · Zbl 0851.53014 · doi:10.1016/0393-0440(95)00028-G
[16] Koslowski T A 2007 Dynamical quantum geometry (DQG programme) arXiv:0709.3465
[17] Sahlmann H 2010 On loop quantum gravity kinematics with non-degenerate spatial background Class. Quantum Grav.27 225007 · Zbl 1205.83029 · doi:10.1088/0264-9381/27/22/225007
[18] Koslowski T and Sahlmann H 2012 Loop quantum gravity vacuum with nondegenerate geometry Sigma8 026 · Zbl 1242.83042 · doi:10.3842/SIGMA.2012.026
[19] Varadarajan M 2013 The generator of spatial diffeomorphisms in the Koslowski-Sahlmann representation Class. Quantum Grav.30 175017 · Zbl 1273.83078 · doi:10.1088/0264-9381/30/17/175017
[20] Varadarajan M and Campiglia M 2014 The Koslowski-Sahlmann representation: gauge and diffeomorphism invariance Class. Quantum Grav.31 075002 · Zbl 1291.83101 · doi:10.1088/0264-9381/31/7/075002
[21] Varadarajan M and Campiglia M 2014 The Koslowski-Sahlmann representation: quantum configuration space Class. Quantum Grav.31 175009 · Zbl 1291.83101 · doi:10.1088/0264-9381/31/7/075002
[22] Bodendorfer N 2016 Some notes on the Kodama state, maximal symmetry, and the isolated horizon boundary condition Phys. Rev. D 93 124042 · doi:10.1103/PhysRevD.93.124042
[23] Rezende D J and Perez A 2008 θ parameter in loop quantum gravity: effects on quantum geometry and black hole entropy Phys. Rev. D 78 084025 · doi:10.1103/PhysRevD.78.084025
[24] Dittrich B and Geiller M 2015 A new vacuum for loop quantum gravity Class. Quantum Grav.32 112001 · Zbl 1320.83030 · doi:10.1088/0264-9381/32/11/112001
[25] Dittrich B and Geiller M 2015 Flux formulation of loop quantum gravity: classical formulation Class. Quantum Grav.32 135016 · Zbl 1320.83030 · doi:10.1088/0264-9381/32/11/112001
[26] Bahr B, Dittrich B and Geiller M 2015 A new realization of quantum geometry arXiv:1506.08571
[27] Horowitz G T 1989 Exactly soluble diffeomorphism invariant theories Commun. Math. Phys.125 417 · Zbl 0684.53075 · doi:10.1007/BF01218410
[28] Baratin A, Dittrich B, Oriti D and Tambornino J 2011 Non-commutative flux representation for loop quantum gravity Class. Quantum Grav.28 175011 · Zbl 1223.83051 · doi:10.1088/0264-9381/28/17/175011
[29] Dittrich B, Guedes C and Oriti D 2013 On the space of generalized fluxes for loop quantum gravity Class. Quantum Grav.30 055008 · Zbl 1263.83067 · doi:10.1088/0264-9381/30/5/055008
[30] Dittrich B and Steinhaus S 2014 Time evolution as refining, coarse graining and entangling New J. Phys.16 123041 · Zbl 1451.81068 · doi:10.1088/1367-2630/16/12/123041
[31] Dittrich B 2014 The continuum limit of loop quantum gravity—a framework for solving the theory 100 Years of General Relativity ed A Ashtekar and J Pullin (Singapore: World Scientific) to be published, arXiv:1409.1450
[32] Dittrich B and Speziale S 2008 Area-angle variables for general relativity New J. Phys.10 083006 · doi:10.1088/1367-2630/10/8/083006
[33] Dittrich B and Ryan J P 2011 Phase space descriptions for simplicial 4d geometries Class. Quantum Grav.28 065006 · Zbl 1214.83010 · doi:10.1088/0264-9381/28/6/065006
[34] Freidel L and Speziale S 2010 Twisted geometries: a geometric parametrisation of SU(2) phase space Phys. Rev. D 82 084040 · doi:10.1103/PhysRevD.82.084040
[35] Dittrich B and Ryan J P 2010 Simplicity in simplicial phase space Phys. Rev. D 82 064026 · doi:10.1103/PhysRevD.82.064026
[36] Kong L and Wen X G 2014 Braided fusion categories, gravitational anomalies, and the mathematical framework for topological orders in any dimensions arXiv:1405.5858
[37] Lan T, Kong L and Wen X G 2016 Classification of 2+1D topological orders and SPT orders for bosonic and fermionic systems with on-site symmetries arXiv:1602.05946
[38] Dittrich B and Kaminski W 2013 Topological lattice field theories from intertwiner dynamics arXiv:1311.1798
[39] Dittrich B, Martin-Benito M and Steinhaus S 2014 Quantum group spin nets: refinement limit and relation to spin foams Phys. Rev. D 90 024058 · doi:10.1103/PhysRevD.90.024058
[40] Dittrich B, Mizera S and Steinhaus S 2016 Decorated tensor network renormalization for lattice gauge theories and spin foam models New J. Phys.18 053009 · doi:10.1088/1367-2630/18/5/053009
[41] Delcamp C and Dittrich B 2016 Towards a phase diagram for spin foams arXiv: 1612.04506
[42] Turaev V and Viro O 1992 State sum invariants of 3 manifolds and quantum 6j symbols Topology31 865 · Zbl 0779.57009 · doi:10.1016/0040-9383(92)90015-A
[43] Barrett J W and Westbury B W 1996 Invariants of piecewise linear three manifolds Trans. Am. Math. Soc.348 3997 · Zbl 0865.57013 · doi:10.1090/S0002-9947-96-01660-1
[44] Crane L and Yetter D 1993 A categorical construction of 4D topological quantum field theories Quantum Topology ed L Kauffman and R Baadhio (Singapore: World Scientific) arXiv:hep-th/9301062 · doi:10.1142/9789812796387_0005
[45] Crane L, Kauffman L H and Yetter D 1994 State-sum invariants of 4-manifolds I arXiv:hep-th/9409167
[46] Rovelli C 1993 The Basis of the Ponzano-Regge-Turaev-Viro-Ooguri quantum gravity model in the loop representation basis Phys. Rev. D 48 2702 · doi:10.1103/PhysRevD.48.2702
[47] Smolin L 1995 Linking topological quantum field theory and nonperturbative quantum gravity J. Math. Phys.36 6417 · Zbl 0856.58055 · doi:10.1063/1.531251
[48] Major S and Smolin L 1996 Quantum deformation of quantum gravity Nucl. Phys. B 473 267 · Zbl 0925.83019 · doi:10.1016/0550-3213(96)00259-3
[49] Dupuis M and Girelli F 2014 Observables in loop quantum gravity with a cosmological constant Phys. Rev. D 90 104037 · doi:10.1103/PhysRevD.90.104037
[50] Bonzom V, Dupuis M and Girelli F 2014 Towards the Turaev-Viro amplitudes from a Hamiltonian constraint Phys. Rev. D 90 104038 · doi:10.1103/PhysRevD.90.104038
[51] Haggard H M, Han M, Kaminski W and Riello A 2015 SL(2,C) Chern-Simons theory, a non-planar graph operator, and 4D loop quantum gravity with a cosmological constant: semiclassical geometry Nucl. Phys. B 900 1 · Zbl 1331.83025 · doi:10.1016/j.nuclphysb.2015.08.023
[52] Haggard H M, Han M and Riello A 2015 Encoding curved tetrahedra in face holonomies: a phase space of shapes from group-valued moment maps Ann. Henri Poincaré17 2001-48 · Zbl 1345.83015 · doi:10.1007/s00023-015-0455-4
[53] Haggard H M, Han M and Riello A 2015 SL(2,C) Chern-Simons theory, flat connections, and four-dimensional quantum geometry arXiv:1512.07690
[54] Balsam B and Kirillov A Jr 2010 Turaev-Viro invariants as an extended TQFT arXiv:1004.1533
[55] Balsam B 2010 Turaev-Viro invariants as an extended TQFT II arXiv:1010.1222
[56] Balsam B 2010 Turaev-Viro invariants as an extended TQFT III arXiv:1012.0560
[57] Balsam B 2012 Turaev-Viro theory as an extended TQFT PhD Thesis Stony Brook University (http://hdl.handle.net/1951/59574)
[58] Levin M A and Wen X-G 2005 String-net condensation: a physical mechanism for topological phases Phys. Rev. B 71 045110 · doi:10.1103/PhysRevB.71.045110
[59] König R, Kuperberg G and Reichardt B W 2010 Quantum computation with Turaev-Viro codes Ann. Phys., NY325 2707-49 · Zbl 1206.81033 · doi:10.1016/j.aop.2010.08.001
[60] Lan T and Wen X-G 2014 Topological quasiparticles and the holographic bulk-edge relation in 2 + 1D string-net models Phys. Rev. B 90 115119 · doi:10.1103/PhysRevB.90.115119
[61] Hu Y, Geer N and Wu Y-S 2015 Full dyon excitation spectrum in generalized Levin-Wen models arXiv:1502.03433
[62] Perez A and Pranzetti D 2010 On the regularization of the constraints algebra of quantum gravity in 2 + 1 dimensions with non-vanishing cosmological constant Class. Quantum Grav.27 145009 · Zbl 1195.83048 · doi:10.1088/0264-9381/27/14/145009
[63] Noui K, Perez A and Pranzetti D 2011 Canonical quantization of non-commutative holonomies in 2 + 1 loop quantum gravity J. High Energy Phys. JHEP10(2011)036 · Zbl 1303.83013 · doi:10.1007/JHEP10(2011)036
[64] Pranzetti D 2014 Turaev-Viro amplitudes from 2 + 1 loop quantum gravity Phys. Rev. D 89 084058 · doi:10.1103/PhysRevD.89.084058
[65] Bahr B and Dittrich B 2009 Improved and perfect actions in discrete gravity Phys. Rev. D 80 124030 · doi:10.1103/PhysRevD.80.124030
[66] Bahr B and Dittrich B 2010 Regge calculus from a new angle New J. Phys.12 033010 · Zbl 1360.83016 · doi:10.1088/1367-2630/12/3/033010
[67] Freidel L and Louapre D 2004 Ponzano-Regge model revisited: I. Gauge fixing, observables and interacting spinning particles Class. Quantum Grav.21 5685-726 · Zbl 1060.83013 · doi:10.1088/0264-9381/21/24/002
[68] Noui K and Perez A 2005 Three dimensional loop quantum gravity: coupling to point particles Class. Quantum Grav.22 4489-514 · Zbl 1086.83015 · doi:10.1088/0264-9381/22/21/005
[69] Noui K 2006 Three dimensional loop quantum gravity: particles and the quantum double J. Math. Phys.47 102501 · Zbl 1112.83024 · doi:10.1063/1.2352860
[70] Kirillov A Jr 2011 String-net model of Turaev-Viro invariants arXiv:1106.6033
[71] Ocneanu A 1994 Chirality for operator algebras Subfactors ed H Araki et al (Singapore: World Scientific) pp 39 63 · Zbl 0927.46032
[72] Ocneanu A Operator algebras, topology and subgroups of quantum symmetry. Construction of subgroups of quantum groups Taniguchi Conferenceon Mathematics Nara 98(Advanced Studies in Pure Mathematics vol 31) (Tokyo: Math. Soc. Japan) pp 235-63 · Zbl 1021.46053
[73] Müger M 2003 From subfactors to categories and topology: I. Frobenius algebras in and Morita equivalence of tensor categories J. Pure Appl. Algebra180 81-157 · Zbl 1033.18002 · doi:10.1016/S0022-4049(02)00247-5
[74] Müger M 2003 From subfactors to categories and topology: II. The quantum double of tensor categories and subfactors J. Pure Appl. Algebra180 159-219 · Zbl 1033.18003 · doi:10.1016/S0022-4049(02)00248-7
[75] Dittrich B, Hoehn P, Koslowski T and Nelson M 2015 Chaos, Dirac observables and constraint quantization arXiv:1508.01947
[76] Dittrich B, Hoehn P, Koslowski T and Nelson M 2015 Can chaos be observed in quantum gravity? arXiv:1602.03237
[77] Dittrich B and Thiemann T 2006 Testing the master constraint programme for loop quantum gravity: I. General framework Class. Quantum Grav.23 1025-66 · Zbl 1088.83009 · doi:10.1088/0264-9381/23/4/001
[78] Levin M and Nave C P 2007 Tensor renormalization group approach to 2D classical lattice models Phys. Rev. Lett.99 120601 · doi:10.1103/PhysRevLett.99.120601
[79] Dittrich B, Martin-Benito M and Schnetter E 2013 Coarse graining of spin net models: dynamics of intertwiners New J. Phys.15 103004 · doi:10.1088/1367-2630/15/10/103004
[80] Steinhaus S 2015 Coupled intertwiner dynamics: a toy model for coupling matter to spin foam models Phys. Rev. D 92 064007 · doi:10.1103/PhysRevD.92.064007
[81] Dittrich B, Seth C and Steinhaus S Phase diagram for BC and EPRL intertwiners, to appear
[82] Chen L Q 2016 Bulk amplitude and degree of divergence in 4d spin foams Phys. Rev. D 94 104025 · doi:10.1103/PhysRevD.94.104025
[83] Girelli F and Rennert J to appear
[84] Meusburger C and Noui K 2010 The Hilbert space of 3d gravity: quantum group symmetries and observables Adv. Theor. Math. Phys.14 1651-716 · Zbl 1241.83036 · doi:10.4310/ATMP.2010.v14.n6.a3
[85] Freidel L and Louapre D 2004 Ponzano-Regge model revisited: II. Equivalence with Chern-Simons arXiv:gr-qc/0410141
[86] Rovelli C and Vidotto F 2015 Compact phase space, cosmological constant, discrete time Phys. Rev. D 91 084037 · doi:10.1103/PhysRevD.91.084037
[87] Dittrich B 2012 From the discrete to the continuous: towards a cylindrically consistent dynamics New J. Phys.14 123004 · Zbl 1448.83037 · doi:10.1088/1367-2630/14/12/123004
[88] Kitaev A Y 2003 Fault tolerant quantum computation by anyons Ann. Phys.303 2 · Zbl 1012.81006 · doi:10.1016/S0003-4916(02)00018-0
[89] Bonzom V, Dupuis M, Girelli F and Livine E R 2014 Deformed phase space for 3d loop gravity and hyperbolic discrete geometries arXiv:1402.2323
[90] Charles C and Livine E R 2015 Closure constraints for hyperbolic tetrahedra Class. Quantum Grav.32 135003 · Zbl 1323.83011 · doi:10.1088/0264-9381/32/13/135003
[91] Etingof P, Gelaki S, Nikshych D and Ostrik V 2015 Tensor Categories (Providence, RI: American Mathematical Society) · Zbl 1365.18001 · doi:10.1090/surv/205
[92] Kirillov A N and Reshetikhin N Y 1989 Representations of the algebra Uq (SU(2)), q-orthogonal polynomials and invariants of links Infinite Dimensional Lie Algebras and Groups ed V G Kac (Singapore: World Scientific) pp 285-339
[93] Kauffman L H and Lins S 1994 Temperley-Lieb Recoupling Theory and Invariants of 3-Manifolds (Princeton, NJ: Princeton University Press) · Zbl 0821.57003 · doi:10.1515/9781400882533
[94] Carter J S, Flath D E and Saito M 1995 The Classical and Quantum 6j-symbols (Princeton, NJ: Princeton University Press)
[95] Freidel L and Louapre D 2003 Diffeomorphisms and spin foam models Nucl. Phys. B 662 279-98 · Zbl 1040.83011 · doi:10.1016/S0550-3213(03)00306-7
[96] Dittrich B 2009 Diffeomorphism symmetry in quantum gravity models Adv. Sci. Lett.2 151 · doi:10.1166/asl.2009.1022
[97] Noui K and Perez A 2005 Three-dimensional loop quantum gravity: physical scalar product and spin foam models Class. Quantum Grav.22 1739 · Zbl 1072.83009 · doi:10.1088/0264-9381/22/9/017
[98] Barrett J W, Galassi M, Miller W A, Sorkin R D, Tuckey P A and Williams R M 1997 A paralellizable implicit evolution scheme for Regge calculus Int. J. Theor. Phys.36 815 · Zbl 0871.53067 · doi:10.1007/BF02435787
[99] Bonzom V Geometrie quantique dans les mousses de spins: De la theorie topologique BF vers la relativite generale arXiv:1009.5100
[100] Dittrich B and Hoehn P A 2012 Canonical simplicial gravity Class. Quantum Grav.29 115009 · Zbl 1246.83006 · doi:10.1088/0264-9381/29/11/115009
[101] Delcamp C, Dittrich B and Riello A 2016 Fusion basis for lattice gauge theory and loop quantum gravity arXiv:1607.08881
[102] Livine E R 2014 Deformation operators of spin networks and coarse-graining Class. Quantum Grav.31 075004 · Zbl 1291.83111 · doi:10.1088/0264-9381/31/7/075004
[103] Delcamp C and Dittrich B 2016 From 3D TQFTs to 4D models with defects arXiv: 1606.02384
[104] Sahlmann H 2011 Black hole horizons from within loop quantum gravity Phys. Rev. D 84 044049 · doi:10.1103/PhysRevD.84.044049
[105] Sahlmann H and Thiemann T 2012 Chern-Simons expectation values and quantum horizons from LQG and the Duflo map Phys. Rev. Lett.108 111303 · doi:10.1103/PhysRevLett.108.111303
[106] Fock V V and Rosly A A 1999 Poisson structure on moduli of flat connections on Riemann surfaces and the r-matrix Moscow Seminar in Mathematical Physics(American Mathematical Society Translations: Series 2) vol 191 (Providence, RI: American Mathematical Society) pp 67-86 arXiv:math.QA/9802054 · Zbl 0945.53050 · doi:10.1090/trans2/191/03
[107] Roberts J 1995 Skein theory and Turaev-Viro invariants Topology34 771-87 · Zbl 0866.57014 · doi:10.1016/0040-9383(94)00053-0
[108] Turaev V and Virelizier A 2010 On two approaches to 3-dimensional TQFTs arXiv:1006.3501
[109] Buerscher O and Aguado M 2009 Mapping Kitaev’s quantum double lattice models to Levin and Wen’s string-net models Phys. Rev. B 80 155136 · doi:10.1103/PhysRevB.80.155136
[110] Buerschaper O, Christandl M, Kong L and Aguado M 2013 Electric-magnetic duality of lattice systems with topological order Nucl. Phys. B 876 619 · Zbl 1284.81355 · doi:10.1016/j.nuclphysb.2013.08.014
[111] Pfeiffer H 2009 Tannaka-Krein reconstruction and a characterization of modular tensor categories J. Algebra321 3714-63 · Zbl 1208.18005 · doi:10.1016/j.jalgebra.2009.02.026
[112] Hu Y, Stirling S D and Wu Y- S 2012 Ground state degeneracy in the Levin-Wen model for topological phases Phys. Rev. B 85 075107 · doi:10.1103/PhysRevB.85.075107
[113] Kitaev A and Kong L 2012 Models for gapped boundaries and domain walls Commun. Math. Phys.313 351 · Zbl 1250.81141 · doi:10.1007/s00220-012-1500-5
[114] Kong L 2014 Some universal properties of Levin-Wen models Proc. 17th Int. Congress of Mathematical Physics pp 444-55 arXiv:1211.4644 · Zbl 1302.81143
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.