×

Invariants of piecewise-linear 3-manifolds. (English) Zbl 0865.57013

Summary: This paper presents an algebraic framework for constructing invariants of closed oriented 3-manifolds by taking a state sum model on a triangulation. This algebraic framework consists of a tensor category with a condition on the duals which we have called a spherical category. A significant feature is that the tensor category is not required to be braided. The main examples are constructed from the categories of representations of involutive Hopf algebras and of quantised enveloping algebras at a root of unity.

MSC:

57N10 Topology of general \(3\)-manifolds (MSC2010)

References:

[1] Henning Haahr Andersen, Tensor products of quantized tilting modules, Comm. Math. Phys. 149 (1992), no. 1, 149 – 159. · Zbl 0760.17004
[2] Henning Haahr Andersen and Jan Paradowski, Fusion categories arising from semisimple Lie algebras, Comm. Math. Phys. 169 (1995), no. 3, 563 – 588. · Zbl 0827.17010
[3] J. W. Barrett and B. W. Westbury, Spherical categories, preprint, hep-th/9310164, University of Nottingham, 1993. · Zbl 0930.18004
[4] J. W. Barrett and B. W. Westbury, The equality of 3-manifold invariants, Math. Proc. Cambridge Philos. Soc. 118 (1995), 503–510. · Zbl 0861.57024
[5] Bergfinnur Durhuus, Hans Plesner Jakobsen, and Ryszard Nest, Topological quantum field theories from generalized 6\?-symbols, Rev. Math. Phys. 5 (1993), no. 1, 1 – 67. · Zbl 0808.57010 · doi:10.1142/S0129055X93000024
[6] Peter J. Freyd and David N. Yetter, Braided compact closed categories with applications to low-dimensional topology, Adv. Math. 77 (1989), no. 2, 156 – 182. · Zbl 0679.57003 · doi:10.1016/0001-8708(89)90018-2
[7] Peter Freyd and David N. Yetter, Coherence theorems via knot theory, J. Pure Appl. Algebra 78 (1992), no. 1, 49 – 76. · Zbl 0747.18010 · doi:10.1016/0022-4049(92)90018-B
[8] L. C. Glaser, Geometrical Combinatorial Topology I, Van Nostrand Reinhold Mathematical Studies 27 (1970). · Zbl 0212.55603
[9] André Joyal and Ross Street, The geometry of tensor calculus. I, Adv. Math. 88 (1991), no. 1, 55 – 112. · Zbl 0738.18005 · doi:10.1016/0001-8708(91)90003-P
[10] G. M. Kelly and M. L. Laplaza, Coherence for compact closed categories, J. Pure Appl. Algebra 19 (1980), 193 – 213. · Zbl 0447.18005 · doi:10.1016/0022-4049(80)90101-2
[11] Greg Kuperberg, Involutory Hopf algebras and 3-manifold invariants, Internat. J. Math. 2 (1991), no. 1, 41 – 66. · Zbl 0726.57016 · doi:10.1142/S0129167X91000053
[12] Richard G. Larson and David E. Radford, Finite-dimensional cosemisimple Hopf algebras in characteristic 0 are semisimple, J. Algebra 117 (1988), no. 2, 267 – 289. · Zbl 0649.16005 · doi:10.1016/0021-8693(88)90107-X
[13] Richard Gustavus Larson and Moss Eisenberg Sweedler, An associative orthogonal bilinear form for Hopf algebras, Amer. J. Math. 91 (1969), 75 – 94. · Zbl 0179.05803 · doi:10.2307/2373270
[14] J. P. Moussouris, Quantum models of space-time based on coupling theory, D. Phil. Oxford (1983).
[15] Udo Pachner, P.L. homeomorphic manifolds are equivalent by elementary shellings, European J. Combin. 12 (1991), no. 2, 129 – 145. · Zbl 0729.52003 · doi:10.1016/S0195-6698(13)80080-7
[16] G. Ponzano and T. Regge, Semiclassical limit of Racah coefficients, in Spectroscopic and Group Theoretical Methods in Physics, North-Holland, Amsterdam, 1968, pp. 1–58.
[17] N. Reshetikhin and V. G. Turaev, Invariants of 3-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), no. 3, 547 – 597. · Zbl 0725.57007 · doi:10.1007/BF01239527
[18] A. N. Kirillov and N. Yu. Reshetikhin, Representations of the algebra \?_{\?}(\?\?(2)),\?-orthogonal polynomials and invariants of links, Infinite-dimensional Lie algebras and groups (Luminy-Marseille, 1988) Adv. Ser. Math. Phys., vol. 7, World Sci. Publ., Teaneck, NJ, 1989, pp. 285 – 339. · Zbl 0742.17018
[19] N. Yu. Reshetikhin and V. G. Turaev, Ribbon graphs and their invariants derived from quantum groups, Comm. Math. Phys. 127 (1990), no. 1, 1 – 26. · Zbl 0768.57003
[20] J. Roberts, Skein theory and Turaev-Viro invariants, Topology 34 (1995), 771–787. · Zbl 0866.57014
[21] Colin Patrick Rourke and Brian Joseph Sanderson, Introduction to piecewise-linear topology, Springer Study Edition, Springer-Verlag, Berlin-New York, 1982. Reprint.
[22] Vladimir Turaev, Quantum invariants of 3-manifold and a glimpse of shadow topology, Quantum groups (Leningrad, 1990) Lecture Notes in Math., vol. 1510, Springer, Berlin, 1992, pp. 363 – 366. · Zbl 0752.57010 · doi:10.1007/BFb0101203
[23] Vladimir G. Turaev, Modular categories and 3-manifold invariants, Internat. J. Modern Phys. B 6 (1992), no. 11-12, 1807 – 1824. Topological and quantum group methods in field theory and condensed matter physics. · Zbl 0798.57002 · doi:10.1142/S0217979292000876
[24] V. G. Turaev, Quantum invariants of knots and 3-manifolds, De Gruyter Studies in Mathematics, vol. 18, Walter de Gruyter & Co., Berlin, 1994. · Zbl 0812.57003
[25] V. G. Turaev and O. Ya. Viro, State sum invariants of 3-manifolds and quantum 6\?-symbols, Topology 31 (1992), no. 4, 865 – 902. · Zbl 0779.57009 · doi:10.1016/0040-9383(92)90015-A
[26] V. Turaev and H. Wenzl, Quantum invariants of 3-manifolds associated with classical simple Lie algebras, Internat. J. Math. 4 (1993), no. 2, 323 – 358. · Zbl 0784.57007 · doi:10.1142/S0129167X93000170
[27] K. Walker, On Witten’s 3-manifold invariants, 1990.
[28] David N. Yetter, State-sum invariants of 3-manifolds associated to Artinian semisimple tortile categories, Topology Appl. 58 (1994), no. 1, 47 – 80. · Zbl 0832.57010 · doi:10.1016/0166-8641(94)90073-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.