×

Regge calculus from a new angle. (English) Zbl 1360.83016

Summary: In Regge calculus, space-time is usually approximated by a triangulation with flat simplices. We present a formulation using simplices with constant sectional curvature adjusted to the presence of a cosmological constant. As we will show, such a formulation allows us to replace the length variables by three- or four-dimensional dihedral angles as basic variables. Moreover, we will introduce a first-order formulation, which, in contrast to using flat simplices, does not require any constraints. These considerations could be useful for the construction of quantum gravity models with a cosmological constant.

MSC:

83C27 Lattice gravity, Regge calculus and other discrete methods in general relativity and gravitational theory
83F05 Relativistic cosmology

References:

[1] Regge T 1961 General relativity without coordinates Nuovo Cimento19 558 · doi:10.1007/BF02733251
[2] Regge T and Williams R M 2000 Discrete structures in gravity J. Math. Phys.41 3964 (arXiv:gr-qc/0012035) · Zbl 0984.83016 · doi:10.1063/1.533333
[3] Hamber H W and Williams R M 2004 Non-perturbative gravity and the spin of the lattice graviton Phys. Rev. D 70 124007 (arXiv:hep-th/0407039) · doi:10.1103/PhysRevD.70.124007
[4] Dittrich B and Ryan J P 2008 Phase space descriptions for simplicial 4D geometries arXiv:0807.2806v1 [gr-qc] · Zbl 1214.83010
[5] Perez A 2003 Spin foam models for quantum gravity Class. Quantum Grav.20 R43 (arXiv:gr-qc/0301113) · Zbl 1030.83002 · doi:10.1088/0264-9381/20/6/202
[6] Perez A 2004 Introduction to loop quantum gravity and spin foams arXiv:gr-qc/0409061
[7] Engle J, Pereira R and Rovelli C 2007 The loop-quantum-gravity vertex-amplitude Phys. Rev. Lett.99 161301 (arXiv:0705.2388 [gr-qc]) · Zbl 1228.83045 · doi:10.1103/PhysRevLett.99.161301
[8] Livine E R and Speziale S 2008 Consistently solving the simplicity constraints for spinfoam quantum gravity Europhys. Lett.81 50004 (arXiv:0708.1915 [gr-qc]) · doi:10.1209/0295-5075/81/50004
[9] Freidel L and Krasnov K 2008 Class. Quantum Grav.25 125018 (arXiv:0708.1595 [gr-qc]) · Zbl 1144.83007 · doi:10.1088/0264-9381/25/12/125018
[10] Dittrich B and Speziale S 2008 Area-angle variables for general relativity New J. Phys.10 083006 (arXiv:0802.0864 [gr-qc]) · doi:10.1088/1367-2630/10/8/083006
[11] Rovelli C 1993 The basis of the Ponzano-Regge-Turaev-Viro-Ooguri quantum gravity model in the loop representation basis Phys. Rev. D 48 2702 · doi:10.1103/PhysRevD.48.2702
[12] Makela J 1994 On the phase space coordinates and the Hamiltonian constraint of Regge calculus Phys. Rev. D 49 2882 · doi:10.1103/PhysRevD.49.2882
[13] Makela J 2000 Variation of area variables in Regge calculus Class. Quantum Grav.17 4991 (arXiv:gr-qc/9801022) · Zbl 0972.83028 · doi:10.1088/0264-9381/17/24/304
[14] Makela J and Williams R M 2001 Constraints on area variables in Regge calculus Class. Quantum Grav.18 L43 (arXiv:gr-qc/0011006) · Zbl 0973.83017 · doi:10.1088/0264-9381/18/4/102
[15] Barrett J W, Rocek M and Williams R M 1999 A note on area variables in Regge calculus Class. Quantum Grav.16 1373 (arXiv:gr-qc/9710056) · Zbl 0934.83019 · doi:10.1088/0264-9381/16/4/025
[16] Wainwright C and Williams R M 2004 Area Regge calculus and discontinuous metrics Class. Quantum Grav.21 4865 (arXiv:gr-qc/0405031) · Zbl 1078.83009 · doi:10.1088/0264-9381/21/21/008
[17] Barrett J W 1994 First order Regge calculus Class. Quantum Grav.11 2723 (arXiv:hep-th/9404124) · Zbl 0821.53052 · doi:10.1088/0264-9381/11/11/013
[18] Dittrich B 2008 Diffeomorphism symmetry in quantum gravity models arXiv:0810.3594 [Gr-qc]
[19] Bahr B and Dittrich B 2009 (Broken) gauge symmetries and constraints in Regge calculus Class. Quantum Grav.26 225011 · Zbl 1181.83062 · doi:10.1088/0264-9381/26/22/225011
[20] Bahr B and Dittrich B 2009 Improved and perfect actions in discretize gravity Phys. Rev. D 80 124030 · doi:10.1103/PhysRevD.80.124030
[21] Turaev V G and Viro O Y 1992 State sum invariants of 3 manifolds and quantum 6j symbols Topology31 865 · Zbl 0779.57009 · doi:10.1016/0040-9383(92)90015-A
[22] Yuka Taylor U and Woodward C T 2005 6j symbols for Uq(sl2) and non-Euclidean tetrahedra Sel. Math. (NS)11 539 · Zbl 1162.17306 · doi:10.1007/s00029-005-0014-9
[23] Kwok-keung Au T, Luo F and Stong R 2006 Comparing corresponding dihedral angles on classical geometric simplices arXiv:math/0606350 · Zbl 1161.51005
[24] Plebanski J F 1977 On the separation of Einsteinian substructures J. Math. Phys.18 2511 · Zbl 0368.53032 · doi:10.1063/1.523215
[25] Baratin A and Freidel L 2007 Hidden quantum gravity in 3D Feynman diagrams Class. Quantum Grav.24 1993 (arXiv:gr-qc/0604016) · Zbl 1113.83302 · doi:10.1088/0264-9381/24/8/006
[26] Baratin A and Freidel L 2007 Hidden quantum gravity in 4D Feynman diagrams: emergence of spin foams Class. Quantum Grav.24 2027 (arXiv:hep-th/0611042) · Zbl 1113.83303 · doi:10.1088/0264-9381/24/8/007
[27] Lewandowski J and Okolow A 2008 Quantum group connections arXiv:0810.2992 [math-ph]
[28] Wise D K 2006 MacDowell-Mansouri gravity and Cartan geometry arXiv:gr-qc/0611154 · Zbl 1195.83084
[29] Wise D K 2009 Symmetric space Cartan connections and gravity in three and four dimensions arXiv:0904.1738 [math.DG] · Zbl 1188.22014
[30] Kokkendorff S L 2007 Polar duality and the generalized law of sines J. Geom.86 140 · Zbl 1115.51010 · doi:10.1007/s00022-006-1858-7
[31] Milnor J 1994 Collected Papers vol 1 Geometry (Houston, TX: Publish or Perish) · Zbl 0857.01015
[32] Luo F 2004 Continuity of the volume of simplices in classical geometry arXiv:math/0412208
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.