×

Automorphism groups and isometries for cyclic orbit codes. (English) Zbl 1521.94129

Summary: We study orbit codes in the field extension \(\mathbb{F}_{q^n} \). First we show that the automorphism group of a cyclic orbit code is contained in the normalizer of the Singer subgroup if the orbit is generated by a subspace that is not contained in a proper subfield of \(\mathbb{F}_{q^n} \). We then generalize to orbits under the normalizer of the Singer subgroup. In that situation some exceptional cases arise and some open cases remain. Finally we characterize linear isometries between such codes.

MSC:

94B60 Other types of codes

References:

[1] E. T. A. N. Ben-Sasson Etzion Gabizon Raviv, Subspace polynomials and cyclic subspace codes, IEEE Trans. Inform. Theory, 62, 1157-1165 (2016) · Zbl 1359.94757 · doi:10.1109/TIT.2016.2520479
[2] M. Braun, T. Etzion, P. R. J. Östergård, A. Vardy and A. Wasserman, Existence of \(q\)-analogs of Steiner systems, Forum of Mathematics, Pi, 4 (2016). · Zbl 1372.51003
[3] B. H. Chen Liu, Constructions of cyclic constant dimension codes, Des. Codes Cryptogr., 86, 1267-1279 (2018) · Zbl 1387.94121 · doi:10.1007/s10623-017-0394-9
[4] A. M. J. Cossidente de Resmini, Remarks on Singer cylic groups and their normalizers, Des. Codes Cryptogr., 32, 97-102 (2004) · Zbl 1065.20064 · doi:10.1023/B:DESI.0000029214.50635.17
[5] K. Drudge, On the orbits of {S}inger groups and their subgroups, Electron. J. Combin., 9 (2002), Research Paper 15, 10 pp. · Zbl 0998.20003
[6] A. Elsenhans, A. Kohnert and A. Wassermann, Construction of codes for network coding, In Proc. 19th Int. Symp. Math. Theory Netw. Syst., Budapest, Hungary, 2010, 1811-1814.
[7] T. A. Etzion Vardy, Error-correcting codes in projective space, IEEE Trans. Inform. Theory, 57, 1165-1173 (2011) · Zbl 1366.94589 · doi:10.1109/TIT.2010.2095232
[8] N. Gill, On a conjecture of Degos, Cah. Topol. Géom. Différ. Catég., 57, 229-237 (2016) · Zbl 1368.20065
[9] H. H. Gluesing-Luerssen Lehmann, Distance distributions of cyclic orbit codes, Des. Codes Cryptogr., 89, 447-470 (2021) · Zbl 1460.94086 · doi:10.1007/s10623-020-00823-x
[10] H. K. C. Gluesing-Luerssen Morrison Troha, Cyclic orbit codes and stabilizer subfields, Adv. Math. Commun., 9, 177-197 (2015) · Zbl 1361.94063 · doi:10.3934/amc.2015.9.177
[11] J. Gomez-Calderon, On the stabilizer of companion matrices, Proc. Japan Acad. Ser. A Math. Sci., 69, 140-143 (1993) · Zbl 0798.15020
[12] M. D. Hestenes, Singer groups, Canadian Journal of Mathematics, 22, 492-513 (1970) · Zbl 0206.03501 · doi:10.4153/CJM-1970-057-2
[13] B. Huppert, Endliche Gruppen, Springer, Berlin, Heidelberg, New York, 1967. · Zbl 0217.07201
[14] W. M. Kantor, Linear groups containing a Singer cycle, Journal of Algebra, 62, 232-234 (1980) · Zbl 0429.20004 · doi:10.1016/0021-8693(80)90214-8
[15] R. F. R. Koetter Kschischang, Coding for errors and erasures in random network coding, IEEE Trans. Inform. Theory, 54, 3579-3591 (2008) · Zbl 1318.94111 · doi:10.1109/TIT.2008.926449
[16] A. Kohnert and S. Kurz, Construction of large constant dimension codes with a prescribed minimum distance, In J. Calmet, W. Geiselmann, and J. M{ü}ller-Quade, editors, Mathematical Methods in Computer Science, volume 5393. Lecture Notes in Computer Science; Springer, Berlin, 2008, 31-42. · Zbl 1178.94239
[17] K. F. Otal Özbudak, Cyclic subspace codes via subspace polynomials, Des. Codes Cryptogr., 85, 191-204 (2017) · Zbl 1381.94131 · doi:10.1007/s10623-016-0297-1
[18] R. M. N. I. Roth Raviv Tamo, Construction of Sidon spaces with applications to coding, IEEE Trans. Inform. Theory, 64, 4412-4422 (2018) · Zbl 1395.94237 · doi:10.1109/TIT.2017.2766178
[19] A.-L. Trautmann, Isometry and automorphisms of constant dimension codes, Adv. Math. Commun., 7, 147-160 (2013) · Zbl 1271.94036 · doi:10.3934/amc.2013.7.147
[20] A.-L. F. M. J. Trautmann Manganiello Braun Rosenthal, Cyclic orbit codes, IEEE Trans. Inform. Theory, 59, 7386-7404 (2013) · Zbl 1364.94661 · doi:10.1109/TIT.2013.2274266
[21] W. X. Zhao Tang, A characterization of cyclic subspace codes via subspace polynomials, Finite Fields Appl., 57, 1-12 (2019) · Zbl 1468.94489 · doi:10.1016/j.ffa.2019.01.002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.