×

A neural kernel method for capturing multiscale high-dimensional micromorphic plasticity of materials with internal structures. (English) Zbl 1543.74015

Summary: This paper introduces a neural kernel method to generate machine learning plasticity models for micropolar and micromorphic materials that lack material symmetry and have internal structures. Since these complex materials often require higher-dimensional parametric space to be precisely characterized, we introduce a representation learning step where we first learn a feature vector space isomorphic to a finite-dimensional subspace of the original parametric function space from the augmented labeled data expanded from the narrow band of the yield data. This approach simplifies the data augmentation step and enables us to constitute the high-dimensional yield surface in a feature space spanned by the feature kernels. In the numerical examples, we first verified the implementations with data generated from known models, then tested the capacity of the models to discover feature spaces from meso-scale simulation data generated from representative elementary volume (RVE) of heterogeneous materials with internal structures. The neural kernel plasticity model and other alternative machine learning approaches are compared in a computational homogenization problem for layered geomaterials. The results indicate that the neural kernel feature space may lead to more robust forward predictions against sparse and high-dimensional data.

MSC:

74C99 Plastic materials, materials of stress-rate and internal-variable type
74A35 Polar materials
74Q15 Effective constitutive equations in solid mechanics
74S99 Numerical and other methods in solid mechanics
68T05 Learning and adaptive systems in artificial intelligence
Full Text: DOI

References:

[1] Dafalias, Yannis F., Modelling cyclic plasticity: simplicity versus sophistication. Mech. Eng. Mater. (1984)
[2] Wang, Kun; Sun, WaiChing; Salager, Simon; Na, SeonHong; Khaddour, Ghonwa, Identifying material parameters for a micro-polar plasticity model via X-ray micro-computed tomographic (CT) images: lessons learned from the curve-fitting exercises. Int. J. Multiscale Comput. Eng., 4 (2016)
[3] Newton, Isaac, Philosophiæ naturalis principia mathematica (mathematical principles of natural philosophy). Lond. (1687) (1687)
[4] van Orman Quine, Willard, On simple theories of a complex world. Synthese, 103-106 (1963)
[5] Howard, Don A.; Giovanelli, Marco, Einstein’s philosophy of science. Stanford Ency. Philos., 1-20 (2019)
[6] Kant, Immanuel, Critique of pure reason. 1781. Mod. Class. Philos. Camb. MA: Houghton Mifflin, 370-456 (1908)
[7] Herle, Ivo; Gudehus, Gerd, Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies. Mech. Cohesive-Frict. Mater.: Int. J. Exp. Modell. Comput. Mater. Struct., 5, 461-486 (1999)
[8] Gudehus, Gerd; Amorosi, Angelo; Gens, Antonio; Herle, Ivo; Kolymbas, Dimitrios; Mašín, David; Muir Wood, David; Niemunis, Andrzej; Nova, Roberto; Pastor, Manuel, The soilmodels. info project. Int. J. Numer. Anal. Methods Geomech., 12, 1571-1572 (2008)
[9] Sun, Xiao; Bahmani, Bahador; Vlassis, Nikolaos N.; Sun, WaiChing; Xu, Yanxun, Data-driven discovery of interpretable causal relations for deep learning material laws with uncertainty propagation. Granul. Matter, 1-32 (2022)
[10] Dafalias, Yannis F.; Manzari, Majid T., Simple plasticity sand model accounting for fabric change effects. J. Eng. Mech., 6, 622-634 (2004)
[11] Zhao, Jidong; Sheng, Daichao; Rouainia, M.; Sloan, Scott W., Explicit stress integration of complex soil models. Int. J. Numer. Anal. Methods Geomech., 12, 1209-1229 (2005) · Zbl 1140.74561
[12] Dafalias, Yannis F.; Manzari, Majid T.; Papadimitriou, Achilleas G., SANICLAY: simple anisotropic clay plasticity model. Int. J. Numer. Anal. Methods Geomech., 12, 1231-1257 (2006) · Zbl 1196.74112
[13] de Borst, René, A generalisation of J2-flow theory for polar continua. Comput. Methods Appl. Mech. Engrg., 3, 347-362 (1993) · Zbl 0777.73014
[14] Wheeler, S. J.; Gallipoli, D.; Karstunen, M., Comments on use of the Barcelona basic model for unsaturated soils. Int. J. Numer. Anal. Methods Geomech., 15, 1561-1571 (2002) · Zbl 1026.74047
[15] Na, SeonHong; Sun, WaiChing, Computational thermo-hydro-mechanics for multiphase freezing and thawing porous media in the finite deformation range. Comput. Methods Appl. Mech. Engrg., 667-700 (2017) · Zbl 1439.74114
[16] Yin, Qing; Andò, Edward; Viggiani, Gioacchino; Sun, WaiChing, Freezing-induced stiffness and strength anisotropy in freezing clayey soil: Theory, numerical modeling, and experimental validation. Int. J. Numer. Anal. Methods Geomech., 11, 2087-2114 (2022)
[17] Kebria, Mahyar Malekzade; Na, SeonHong; Yu, Fan, An algorithmic framework for computational estimation of soil freezing characteristic curves. Int. J. Numer. Anal. Methods Geomech., 8, 1544-1565 (2022)
[18] Ma, Ran; Sun, WaiChing, Computational thermomechanics for crystalline rock. Part II: Chemo-damage-plasticity and healing in strongly anisotropic polycrystals. Comput. Methods Appl. Mech. Engrg. (2020)
[19] Manzari, Majid T., Application of micropolar plasticity to post failure analysis in geomechanics. Int. J. Numer. Anal. Methods Geomech., 10, 1011-1032 (2004) · Zbl 1075.74581
[20] Lin, Jia; Wu, Wei; Borja, Ronaldo I., Micropolar hypoplasticity for persistent shear band in heterogeneous granular materials. Comput. Methods Appl. Mech. Engrg., 24-43 (2015) · Zbl 1423.74204
[21] Dietsche, Andreas; Steinmann, Paul; Willam, Kaspar, Micropolar elastoplasticity and its role in localization. Int. J. Plast., 7, 813-831 (1993) · Zbl 0794.73004
[22] Donoho, David L., High-dimensional data analysis: The curses and blessings of dimensionality. AMS Math Chall. Lect., 2000, 32 (2000)
[23] Gorji, Maysam B.; Mozaffar, Mojtaba; Heidenreich, Julian N.; Cao, Jian; Mohr, Dirk, On the potential of recurrent neural networks for modeling path dependent plasticity. J. Mech. Phys. Solids (2020)
[24] Bonatti, Colin; Berisha, Bekim; Mohr, Dirk, From CP-FFT to CP-RNN: Recurrent neural network surrogate model of crystal plasticity. Int. J. Plast. (2022)
[25] Heider, Yousef; Wang, Kun; Sun, WaiChing, SO (3)-invariance of informed-graph-based deep neural network for anisotropic elastoplastic materials. Comput. Methods Appl. Mech. Engrg. (2020) · Zbl 1436.74012
[26] Wang, Kun; Sun, WaiChing, A multiscale multi-permeability poroplasticity model linked by recursive homogenizations and deep learning. Comput. Methods Appl. Mech. Engrg., 337-380 (2018) · Zbl 1440.74130
[27] Vlassis, Nikolaos N.; Sun, WaiChing, Sobolev training of thermodynamic-informed neural networks for interpretable elasto-plasticity models with level set hardening. Comput. Methods Appl. Mech. Engrg. (2021) · Zbl 1506.74449
[28] Vaswani, Ashish; Shazeer, Noam; Parmar, Niki; Uszkoreit, Jakob; Jones, Llion; Gomez, Aidan N.; Kaiser, Łukasz; Polosukhin, Illia, Attention is all you need. Adv. Neural Inf. Process. Syst. (2017)
[29] Tibshirani, Robert, Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Stat. Methodol., 1, 267-288 (1996) · Zbl 0850.62538
[30] He, Xiaolong; Chen, Jiun-Shyan, Thermodynamically consistent machine-learned internal state variable approach for data-driven modeling of path-dependent materials. Comput. Methods Appl. Mech. Engrg. (2022) · Zbl 1507.74007
[31] Sussillo, David; Barak, Omri, Opening the black box: low-dimensional dynamics in high-dimensional recurrent neural networks. Neural Comput., 3, 626-649 (2013) · Zbl 1269.92007
[32] Coombs, William M.; Petit, Oscar A.; Motlagh, Yousef Ghaffari, NURBS plasticity: Yield surface representation and implicit stress integration for isotropic inelasticity. Comput. Methods Appl. Mech. Engrg., 342-358 (2016) · Zbl 1425.74022
[33] Coombs, William M.; Motlagh, Yousef Ghaffari, NURBS plasticity: yield surface evolution and implicit stress integration for isotropic hardening. Comput. Methods Appl. Mech. Engrg., 204-220 (2017) · Zbl 1439.74060
[34] Coombs, William M.; Motlagh, Yousef Ghaffari, NURBS plasticity: non-associated plastic flow. Comput. Methods Appl. Mech. Engrg., 419-443 (2018) · Zbl 1440.74080
[35] Xiao, Mian; Sun, WaiChing, Geometric prior of multi-resolution yielding manifolds and the local closest point projection for nearly non-smooth plasticity. Comput. Methods Appl. Mech. Engrg. (2022) · Zbl 1507.74087
[36] Vlassis, Nikolaos N.; Sun, WaiChing, Component-based machine learning paradigm for discovering rate-dependent and pressure-sensitive level-set plasticity models. J. Appl. Mech., 2 (2022)
[37] Fuhg, Jan Niklas; Hamel, Craig M.; Johnson, Kyle; Jones, Reese; Bouklas, Nikolaos, Modular machine learning-based elastoplasticity: Generalization in the context of limited data. Comput. Methods Appl. Mech. Engrg. (2023) · Zbl 1539.74074
[38] Francis Williams, Zan Gojcic, Sameh Khamis, Denis Zorin, Joan Bruna, Sanja Fidler, Or Litany, Neural fields as learnable kernels for 3d reconstruction, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 18500-18510.
[39] Cosserat, Eugène Maurice Pierre; Cosserat, François, ThÉOrie Des Corps DÉFormables (1909), A. Hermann et fils · JFM 40.0862.02
[40] Toupin, RA144512, Elastic materials with couple-stresses. Arch. Ration. Mech. Anal., 1, 385-414 (1962) · Zbl 0112.16805
[41] Toupin, Richard A., Theories of elasticity with couple-stress. Arch. Ration. Mech. Anal., 2, 85-112 (1964) · Zbl 0131.22001
[42] Mindlin, R. D.; Tiersten, HF144513, Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal., 1, 415-448 (1962) · Zbl 0112.38906
[43] Green, Albert Edward; Rivlin, Ronald S., Multipolar continuum mechanics. Arch. Ration. Mech. Anal., 113-147 (1964) · Zbl 0133.17604
[44] Mindlin, Raymond David, Microstructure in linear elasticity (tech. rep.). Columbia Univ. New York Dept. Civ. Eng. Eng. Mech. (1963)
[45] Mindlin, Raymond David, Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct., 4, 417-438 (1965)
[46] Mindlin, Raymond David; Eshel, NN0166, On first strain-gradient theories in linear elasticity. Int. J. Solids Struct., 1, 109-124 (1968) · Zbl 0166.20601
[47] Eringen, A. Cemal, Mechanics of micromorphic continua, 18-35 · Zbl 0754.73079
[48] Mühlhaus, Hans-Bernd; Vardoulakis, Ioannis, The thickness of shear bands in granular materials. Geotechnique, 3, 271-283 (1987)
[49] Peerlings, Ron HJ; Geers, Marc GD; de Borst, René; Brekelmans, WAM1032, A critical comparison of nonlocal and gradient-enhanced softening continua. Int. J. Solids Struct., 44-45, 7723-7746 (2001) · Zbl 1032.74008
[50] Steinmann, Paul, A micropolar theory of finite deformation and finite rotation multiplicative elastoplasticity. Int. J. Solids Struct., 8, 1063-1084 (1994) · Zbl 0945.74523
[51] Larsson, Ragnar; Diebels, Stefan, A second-order homogenization procedure for multi-scale analysis based on micropolar kinematics. Internat. J. Numer. Methods Engrg., 12, 2485-2512 (2007) · Zbl 1194.74282
[52] Jänicke, R.; Diebels, S., Numerical homogenisation of micromorphic media. Tech. Mech.-Eur. J. Eng. Mech., 4, 364-373 (2010)
[53] Neff, Patrizio; Ghiba, Ionel-Dumitrel; Madeo, Angela; Placidi, Luca; Rosi, Giuseppe, A unifying perspective: the relaxed linear micromorphic continuum. Contin. Mech. Thermodyn., 639-681 (2014) · Zbl 1341.74135
[54] Bazant, Zdenek P.; Jirásek, Milan, Nonlocal integral formulations of plasticity and damage: survey of progress. J. Eng. Mech., 11, 1119-1149 (2002)
[55] Schröder, Jörg; Sarhil, Mohammad; Scheunemann, Lisa; Neff, Patrizio, Lagrange and h (curl, b) based finite element formulations for the relaxed micromorphic model. Comput. Mech., 1-25 (2022) · Zbl 1509.74048
[56] Borja, Ronaldo I., Plasticity (2013), Springer · Zbl 1279.74003
[57] Weeger, Oliver, Numerical homogenization of second gradient, linear elastic constitutive models for cubic 3D beam-lattice metamaterials. Int. J. Solids Struct. (2021)
[58] Rosenthal, Paul; Molchanov, Vladimir; Linsen, Lars, A Narrow Band Level Set Method for Surface Extraction from Unstructured Point-Based Volume Data (2011), Universitätsbibliothek Chemnitz
[59] Peng, Songyou; Niemeyer, Michael; Mescheder, Lars; Pollefeys, Marc; Geiger, Andreas, Convolutional occupancy networks, 523-540
[60] Rakhlin, Alexander; Zhai, Xiyu, Consistency of interpolation with Laplace kernels is a high-dimensional phenomenon, 2595-2623
[61] Cho, Youngmin; Saul, Lawrence, Kernel methods for deep learning. Adv. Neural Inf. Process. Syst. (2009)
[62] Vlassis, Nikolaos N.; Ma, Ran; Sun, WaiChing, Geometric deep learning for computational mechanics part i: Anisotropic hyperelasticity. Comput. Methods Appl. Mech. Engrg. (2020) · Zbl 1506.74504
[63] Lin, Feng-Bao; Bažant, Zdeněk P., Convexity of smooth yield surface of frictional material. J. Eng. Mech., 11, 1259-1262 (1986)
[64] Argyris, JH; Faust, G.; Szimmat, J.; Warnke, EP; Willam, KJ, Recent developments in the finite element analysis of prestressed concrete reactor vessels. Nucl. Eng. Des., 1, 42-75 (1974)
[65] Sheng, Daichao; Augarde, Charles E.; Abbo, Andrew J., A fast algorithm for finding the first intersection with a non-convex yield surface. Comput. Geotech., 4, 465-471 (2011)
[66] Pedroso, Dorival M.; Sheng, Daichao; Sloan, Scott W., Stress update algorithm for elastoplastic models with nonconvex yield surfaces. Internat. J. Numer. Methods Engrg., 13, 2029-2062 (2008) · Zbl 1195.74272
[67] Glüge, Rainer; Bucci, Sara, Does convexity of yield surfaces in plasticity have a physical significance?. Math. Mech. Solids, 9, 1364-1373 (2018) · Zbl 1425.74095
[68] Steinmann, Paul, Theory and numerics of ductile micropolar elastoplastic damage. Internat. J. Numer. Methods Engrg., 4, 583-606 (1995) · Zbl 0861.73058
[69] Vardoulakis, Ioannis, Cosserat continuum mechanics. Lect. Notes Appl. Comput. Mech. (2019) · Zbl 1430.74002
[70] Deutsch, Clayton, Calculating effective absolute permeability in sandstone/shale sequences. SPE Format. Eval., 03, 343-348 (1989)
[71] Sone, Hiroki; Zoback, Mark D., Mechanical properties of shale-gas reservoir rocks—Part 2: Ductile creep, brittle strength, and their relation to the elastic modulus. Geophysics, 5, D393-D402 (2013)
[72] Na, SeonHong; Sun, WaiChing; Ingraham, Mathew D.; Yoon, Hongkyu, Effects of spatial heterogeneity and material anisotropy on the fracture pattern and macroscopic effective toughness of mancos shale in Brazilian tests. J. Geophys. Res.: Solid Earth, 8, 6202-6230 (2017)
[73] Semnani, Shabnam J.; White, Joshua A.; Borja, Ronaldo I., Thermoplasticity and strain localization in transversely isotropic materials based on anisotropic critical state plasticity. Int. J. Numer. Anal. Methods Geomech., 18, 2423-2449 (2016)
[74] Zhao, Yang; Semnani, Shabnam J.; Yin, Qing; Borja, Ronaldo I., On the strength of transversely isotropic rocks. Int. J. Numer. Anal. Methods Geomech., 16, 1917-1934 (2018)
[75] Borja, Ronaldo I.; Yin, Qing; Zhao, Yang, Cam-clay plasticity. Part IX: On the anisotropy, heterogeneity, and viscoplasticity of shale. Comput. Methods Appl. Mech. Engrg. (2020) · Zbl 1441.74042
[76] Arndt, Daniel; Bangerth, Wolfgang; Blais, Bruno; Clevenger, Thomas C.; Fehling, Marc; Grayver, Alexander V.; Heister, Timo; Heltai, Luca; Kronbichler, Martin; Maier, Matthias, The deal. II library, version 9.2. J. Numer. Math., 3, 131-146 (2020) · Zbl 1452.65222
[77] Raghu, Maithra; Poole, Ben; Kleinberg, Jon; Ganguli, Surya; Sohl-Dickstein, Jascha, On the expressive power of deep neural networks, 2847-2854
[78] Mohri, Mehryar; Rostamizadeh, Afshin; Talwalkar, Ameet, Foundations of Machine Learning (2018), MIT Press · Zbl 1407.68007
[79] Geers, Marc G. D.; Kouznetsova, Varvara G.; Brekelmans, WAM, Multi-scale computational homogenization: Trends and challenges. J. Comput. Appl. Math., 7, 2175-2182 (2010) · Zbl 1402.74107
[80] Hütter, Geralf, On the micro-macro relation for the microdeformation in the homogenization towards micromorphic and micropolar continua. J. Mech. Phys. Solids, 62-79 (2019)
[81] Wang, Kun; Sun, WaiChing; Du, Qiang, A non-cooperative meta-modeling game for automated third-party calibrating, validating and falsifying constitutive laws with parallelized adversarial attacks. Comput. Methods Appl. Mech. Engrg. (2021) · Zbl 1506.91035
[82] Villarreal, Ruben; Vlassis, Nikolaos N.; Phan, Nhon N.; Catanach, Tommie A.; Jones, Reese E.; Trask, Nathaniel A.; Kramer, Sharlotte LB; Sun, WaiChing, Design of experiments for the calibration of history-dependent models via deep reinforcement learning and an enhanced kalman filter. Comput. Mech., 1, 95-124 (2023) · Zbl 07691253
[83] Biswas, Raja; Poh, Leong Hien, A micromorphic computational homogenization framework for heterogeneous materials. J. Mech. Phys. Solids, 187-208 (2017)
[84] Williams, Christopher K. I.; Rasmussen, Carl Edward, Gaussian Processes for Machine Learning (2006), MIT press Cambridge, MA, (3) · Zbl 1177.68165
[85] Knott, Gary D., Interpolating Cubic Splines (2000), Springer Science & Business Media · Zbl 1057.41001
[86] Wilson, Andrew Gordon; Hu, Zhiting; Salakhutdinov, Ruslan; Xing, Eric P., Deep kernel learning, 370-378
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.