×

Modular machine learning-based elastoplasticity: generalization in the context of limited data. (English) Zbl 1539.74074

Summary: The development of highly accurate constitutive models for materials that undergo path-dependent processes continues to be a complex challenge in computational solid mechanics. Challenges arise both in considering the appropriate model assumptions and from the viewpoint of data availability, verification, and validation. Recently, data-driven modeling approaches have been proposed that aim to establish stress-evolution laws that avoid user-chosen functional forms by relying on machine learning representations and algorithms. However, these approaches not only require a significant amount of data but also need data that probes the full stress space with a variety of complex loading paths. Furthermore, they rarely enforce all necessary thermodynamic principles as hard constraints. Hence, they are in particular not suitable for low-data or limited-data regimes, where the first arises from the cost of obtaining the data and the latter from the experimental limitations of obtaining labeled data, which is commonly the case in engineering applications. In this work, we discuss a hybrid framework that can work on a variable amount of data by relying on the modularity of the elastoplasticity formulation where each component of the model can be chosen to be either a classical phenomenological or a data-driven model depending on the amount of available information and the complexity of the response. The method is tested on synthetic uniaxial data coming from simulations as well as cyclic experimental data for structural materials. The discovered material models are found to not only interpolate well but also allow for accurate extrapolation in a thermodynamically consistent manner far outside the domain of the training data. This ability to extrapolate from limited data was the main reason for the early and continued success of phenomenological models and the main shortcoming in machine learning-enabled constitutive modeling approaches. Training aspects and details of the implementation of these models into Finite Element simulations are discussed and analyzed.

MSC:

74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
65K10 Numerical optimization and variational techniques
74S05 Finite element methods applied to problems in solid mechanics

References:

[1] Raissi, Maziar; Perdikaris, Paris; Karniadakis, George E., Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys., 378, 686-707 (2019) · Zbl 1415.68175
[2] Fuhg, Jan N.; Kalogeris, Ioannis; Fau, Amélie; Bouklas, Nikolaos, Interval and fuzzy physics-informed neural networks for uncertain fields, Probab. Eng. Mech., 68, Article 103240 pp. (2022)
[3] Fuhg, Jan N.; Bouklas, Nikolaos, The mixed deep energy method for resolving concentration features in finite strain hyperelasticity, J. Comput. Phys., 451, Article 110839 pp. (2022) · Zbl 07517152
[4] Gubaev, Konstantin; Podryabinkin, Evgeny V.; Shapeev, Alexander V., Machine learning of molecular properties: Locality and active learning, J. Chem. Phys., 148, 24, Article 241727 pp. (2018)
[5] Podryabinkin, Evgeny V.; Tikhonov, Evgeny V.; Shapeev, Alexander V.; Oganov, Artem R., Accelerating crystal structure prediction by machine-learning interatomic potentials with active learning, Phys. Rev. B, 99, 6, Article 064114 pp. (2019)
[6] Hamel, Craig M.; Roach, Devin J.; Long, Kevin N.; Demoly, Frédéric; Dunn, Martin L.; Qi, H. Jerry, Machine-learning based design of active composite structures for 4D printing, Smart Mater. Struct., 28, 6, Article 065005 pp. (2019)
[7] Sosnovik, Ivan; Oseledets, Ivan, Neural networks for topology optimization, Russian J. Numer. Anal. Math. Modelling, 34, 4, 215-223 (2019) · Zbl 1420.68178
[8] Bin Wang, Jie Lu, Zheng Yan, Huaishao Luo, Tianrui Li, Yu Zheng, Guangquan Zhang, Deep uncertainty quantification: A machine learning approach for weather forecasting, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019, pp. 2087-2095.
[9] Liu, Kailong; Shang, Yunlong; Ouyang, Quan; Widanage, Widanalage Dhammika, A data-driven approach with uncertainty quantification for predicting future capacities and remaining useful life of lithium-ion battery, IEEE Trans. Ind. Electron., 68, 4, 3170-3180 (2020)
[10] Jagtap, Ameya D.; Kharazmi, Ehsan; Karniadakis, George Em, Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems, Comput. Methods Appl. Mech. Engrg., 365, Article 113028 pp. (2020) · Zbl 1442.92002
[11] Hamel, Craig M.; Long, Kevin N.; Kramer, Sharlotte L. B., Calibrating constitutive models with full-field data via physics informed neural networks (2022), arXiv preprint arXiv:2203.16577
[12] Wu, X.; Ghaboussi, J., Representation of material behavior: neural network-based models, (1990 IJCNN International Joint Conference on Neural Networks (1990), IEEE), 229-234
[13] Ghaboussi, Jamshid; Garrett, J. H.; Wu, Xiping, Knowledge-based modeling of material behavior with neural networks, J. Eng. Mech., 117, 1, 132-153 (1991)
[14] Hashash, Y. M.A.; Jung, S.; Ghaboussi, J., Numerical implementation of a neural network based material model in finite element analysis, Internat. J. Numer. Methods Engrg., 59, 7, 989-1005 (2004) · Zbl 1065.74609
[15] Bock, Frederic E.; Aydin, Roland C.; Cyron, Christian J.; Huber, Norbert; Kalidindi, Surya R.; Klusemann, Benjamin, A review of the application of machine learning and data mining approaches in continuum materials mechanics, Front. Mater., 6, 110 (2019)
[16] Rocha, I. B.C. M.; Kerfriden, Pierre; van der Meer, F. P., On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning, J. Comput. Phys.: X, 9, Article 100083 pp. (2021) · Zbl 07785548
[17] Javadi, A. A.; Tan, T. P.; Zhang, M., Neural network for constitutive modelling in finite element analysis, Comput. Assist. Mech. Eng. Sci., 10, 4, 523-530 (2003) · Zbl 1136.74378
[18] Lefik, Marek; Schrefler, Bernhard A., Artificial neural network as an incremental non-linear constitutive model for a finite element code, Comput. Methods Appl. Mech. Engrg., 192, 28-30, 3265-3283 (2003) · Zbl 1054.74731
[19] Le, B. A.; Yvonnet, Julien; He, Q.-C., Computational homogenization of nonlinear elastic materials using neural networks, Internat. J. Numer. Methods Engrg., 104, 12, 1061-1084 (2015) · Zbl 1352.74266
[20] Xu, Kailai; Huang, Daniel Z.; Darve, Eric, Learning constitutive relations using symmetric positive definite neural networks, J. Comput. Phys., 428, Article 110072 pp. (2021) · Zbl 07511428
[21] Chung, Ingyun; Im, Sunyoung; Cho, Maenghyo, A neural network constitutive model for hyperelasticity based on molecular dynamics simulations, Internat. J. Numer. Methods Engrg., 122, 1, 5-24 (2021) · Zbl 07863060
[22] Fuhg, Jan N.; Marino, Michele; Bouklas, Nikolaos, Local approximate Gaussian process regression for data-driven constitutive models: development and comparison with neural networks, Comput. Methods Appl. Mech. Engrg., 388, Article 114217 pp. (2022) · Zbl 1507.65182
[23] Jones, Reese E.; Templeton, Jeremy A.; Sanders, Clay M.; Ostien, Jakob T., Machine learning models of plastic flow based on representation theory (2018), arXiv preprint arXiv:1809.00267
[24] Frankel, Ari L.; Jones, Reese E.; Swiler, Laura P., Tensor basis Gaussian process models of hyperelastic materials, J. Mach. Learn. Model. Comput., 1, 1 (2020)
[25] Fuhg, Jan N.; Bouklas, Nikolaos, On physics-informed data-driven isotropic and anisotropic constitutive models through probabilistic machine learning and space-filling sampling, Comput. Methods Appl. Mech. Engrg., 394, Article 114915 pp. (2022) · Zbl 1507.74551
[26] Fuhg, J. N.; Bouklas, N.; Jones, R. E., Learning hyperelastic anisotropy from data via a tensor basis neural network, J. Mech. Phys. Solids, 168, Article 105022 pp. (2022)
[27] Klein, Dominik K.; Fernández, Mauricio; Martin, Robert J.; Neff, Patrizio; Weeger, Oliver, Polyconvex anisotropic hyperelasticity with neural networks, J. Mech. Phys. Solids, 159, Article 104703 pp. (2022)
[28] González, David; Chinesta, Francisco; Cueto, Elías, Learning corrections for hyperelastic models from data, Front. Mater., 6, 14 (2019) · Zbl 07511420
[29] Fuhg, Jan Niklas; Böhm, Christoph; Bouklas, Nikolaos; Fau, Amelie; Wriggers, Peter; Marino, Michele, Model-data-driven constitutive responses: application to a multiscale computational framework, Internat. J. Engrg. Sci., 167, Article 103522 pp. (2021) · Zbl 07411518
[30] Frankel, Ari; Hamel, Craig M.; Bolintineanu, Dan; Long, Kevin; Kramer, Sharlotte, Machine learning constitutive models of elastomeric foams, Comput. Methods Appl. Mech. Engrg., 391, Article 114492 pp. (2022) · Zbl 1507.74253
[31] Vlassis, Nikolaos N.; Sun, WaiChing, Sobolev training of thermodynamic-informed neural networks for interpretable elasto-plasticity models with level set hardening, Comput. Methods Appl. Mech. Engrg., 377, Article 113695 pp. (2021) · Zbl 1506.74449
[32] Koeppe, Arnd; Bamer, Franz; Markert, Bernd, An efficient Monte Carlo strategy for elasto-plastic structures based on recurrent neural networks, Acta Mech., 230, 9, 3279-3293 (2019)
[33] Mozaffar, M.; Bostanabad, R.; Chen, W.; Ehmann, K.; Cao, Jian; Bessa, MA, Deep learning predicts path-dependent plasticity, Proc. Natl. Acad. Sci., 116, 52, 26414-26420 (2019)
[34] Gorji, Maysam B.; Mozaffar, Mojtaba; Heidenreich, Julian N.; Cao, Jian; Mohr, Dirk, On the potential of recurrent neural networks for modeling path dependent plasticity, J. Mech. Phys. Solids, 143, Article 103972 pp. (2020)
[35] Wu, Ling; Kilingar, Nanda Gopala; Noels, Ludovic, A recurrent neural network-accelerated multi-scale model for elasto-plastic heterogeneous materials subjected to random cyclic and non-proportional loading paths, Comput. Methods Appl. Mech. Engrg., 369, Article 113234 pp. (2020) · Zbl 1506.74453
[36] Chen, Qiang; Jia, Ruijian; Pang, Shanmin, Deep long short-term memory neural network for accelerated elastoplastic analysis of heterogeneous materials: An integrated data-driven surrogate approach, Compos. Struct., 264, Article 113688 pp. (2021)
[37] Abueidda, Diab W.; Koric, Seid; Sobh, Nahil A.; Sehitoglu, Huseyin, Deep learning for plasticity and thermo-viscoplasticity, Int. J. Plast., 136, Article 102852 pp. (2021)
[38] Jones, R. E.; Frankel, A. L.; Johnson, K. L., A neural ordinary differential equation framework for modeling inelastic stress response via internal state variables (2021), arXiv preprint arXiv:2111.14714
[39] Huang, Dengpeng; Fuhg, Jan Niklas; Weißenfels, Christian; Wriggers, Peter, A machine learning based plasticity model using proper orthogonal decomposition, Comput. Methods Appl. Mech. Engrg., 365, Article 113008 pp. (2020) · Zbl 1442.74042
[40] Masi, Filippo; Stefanou, Ioannis; Vannucci, Paolo; Maffi-Berthier, Victor, Thermodynamics-based artificial neural networks for constitutive modeling, J. Mech. Phys. Solids, 147, Article 104277 pp. (2021) · Zbl 07457735
[41] Vlassis, Nikolaos N.; Sun, WaiChing, Component-based machine learning paradigm for discovering rate-dependent and pressure-sensitive level-set plasticity models, J. Appl. Mech., 89, 2 (2022)
[42] Vlassis, Nikolaos N.; Sun, WaiChing, Geometric deep learning for computational mechanics Part II: Graph embedding for interpretable multiscale plasticity (2022), arXiv preprint arXiv:2208.00246 · Zbl 1536.74283
[43] Tang, Shan; Li, Ying; Qiu, Hai; Yang, Hang; Saha, Sourav; Mojumder, Satyajit; Liu, Wing Kam; Guo, Xu, MAP123-EP: A mechanistic-based data-driven approach for numerical elastoplastic analysis, Comput. Methods Appl. Mech. Engrg., 364, Article 112955 pp. (2020) · Zbl 1442.74044
[44] Kirchdoerfer, Trenton; Ortiz, Michael, Data-driven computational mechanics, Comput. Methods Appl. Mech. Engrg., 304, 81-101 (2016) · Zbl 1425.74503
[45] Eggersmann, Robert; Kirchdoerfer, Trenton; Reese, Stefanie; Stainier, Laurent; Ortiz, Michael, Model-free data-driven inelasticity, Comput. Methods Appl. Mech. Engrg., 350, 81-99 (2019) · Zbl 1441.74048
[46] Chaboche, Jean-Louis, Time-independent constitutive theories for cyclic plasticity, Int. J. Plast., 2, 2, 149-188 (1986) · Zbl 0612.73038
[47] Coleman, Bernard D.; Noll, Walter, The thermodynamics of elastic materials with heat conduction and viscosity, (The Foundations of Mechanics and Thermodynamics (1974), Springer), 145-156
[48] Chaboche, Jean-Louis, On some modifications of kinematic hardening to improve the description of ratchetting effects, Int. J. Plast., 7, 7, 661-678 (1991)
[49] Chaboche, Jean-Louis, A review of some plasticity and viscoplasticity constitutive theories, Int. J. Plast., 24, 10, 1642-1693 (2008) · Zbl 1142.74012
[50] Besson, Jacques; Cailletaud, Georges; Chaboche, Jean-Louis; Forest, Samuel, Non-Linear Mechanics of Materials, Vol. 167 (2009), Springer Science & Business Media · Zbl 0997.74002
[51] Skrzypek, Jacek J.; Ganczarski, Artur W., Mechanics of Anisotropic Materials (2015), Springer · Zbl 1336.74005
[52] Halphen, Bernard; Nguyen, Quoc Son, Sur les matériaux standard généralisés, J. Méc., 14, 1, 39-63 (1975) · Zbl 0308.73017
[53] Lemaitre, Jean; Chaboche, Jean-Louis, Mechanics of Solid Materials (1994), Cambridge University Press · Zbl 0743.73002
[54] Auricchio, Ferdinando; Taylor, Robert L., Two material models for cyclic plasticity: nonlinear kinematic hardening and generalized plasticity, Int. J. Plast., 11, 1, 65-98 (1995) · Zbl 0819.73018
[55] Fuhg, Jan N.; Marino, Michele; Bouklas, Nikolaos, Local approximate gaussian process regression for data-driven constitutive models: development and comparison with neural networks, Computer Methods in Applied Mechanics and Engineering, 388, Article 114217 pp. (2022) · Zbl 1507.65182
[56] Fuhg, Jan N.; van Wees, Lloyd; Obstalecki, Mark; Shade, Paul; Bouklas, Nikolaos; Kasemer, Matthew, Machine-learning convex and texture-dependent macroscopic yield from crystal plasticity simulations, Materialia, 23, Article 101446 pp. (2022)
[57] Fuhg, Jan Niklas; Fau, Amélie; Bouklas, Nikolaos; Marino, Michele, Enhancing phenomenological yield functions with data: challenges and opportunities, European Journal of Mechanics-A/Solids, 104925 (2023) · Zbl 1510.74012
[58] Kalina, Karl A.; Linden, Lennart; Brummund, Jörg; Metsch, Philipp; Kästner, Markus, Automated constitutive modeling of isotropic hyperelasticity based on artificial neural networks, Comput. Mech., 69, 1, 213-232 (2022) · Zbl 07492666
[59] Holzapfel, Gerhard A., Nonlinear solid mechanics: a continuum approach for engineering science, Meccanica, 37, 4, 489-490 (2002)
[60] Flaschel, Moritz; Kumar, Siddhant; De Lorenzis, Laura, Discovering plasticity models without stress data, npj Comput. Mater., 8, 1, 1-10 (2022)
[61] Slater, R_A-C, Engineering and Plasticity: Theory and Application to Metal Forming Processes (1977), Macmillan International Higher Education
[62] de Araújo, F. Sarmento Correia, Elasticidade e plasticidade (1962), Imprensa Portuguesa
[63] Lippmann, H., Matrixungleichungen und die Konvexität der Fliessfläche, ZAMM Z. Angew. Math. Mech., 50, 1-4, 134-137 (1970) · Zbl 0202.25404
[64] Mises, R. v., Mechanik der festen Körper im plastisch-deformablen Zustand, Nachr. Ges. Wiss. Göttingen Math. Phys. Kl., 1913, 582-592 (1913) · JFM 44.0918.06
[65] Frankel, Ari L.; Jones, Reese E.; Alleman, Coleman; Templeton, Jeremy A., Predicting the mechanical response of oligocrystals with deep learning, Comput. Mater. Sci., 169, Article 109099 pp. (2019)
[66] Frankel, Ari L.; Safta, Cosmin; Alleman, Coleman; Jones, Reese, Mesh-based graph convolutional neural networks for modeling materials with microstructure, J. Mach. Learn. Model. Comput., 3, 1 (2022)
[67] Eisenberg, M. A.; Phillips, A., On nonlinear kinematic hardening, Acta Mech., 5, 1, 1-13 (1968) · Zbl 0164.27303
[68] Dafalias, Y. F.; Popov, E. P., Plastic internal variables formalism of cyclic plasticity (1976) · Zbl 0351.73048
[69] Chaboche, J. L.; Van, K. Dang; Cordier, G., Modelization of the Strain Memory Effect on the Cyclic Hardening of 316 Stainless Steel (1979), IASMiRT
[70] Boehler, J. P., On a rational formulation of isotropic and anisotropic hardening, (Applications of Tensor Functions in Solid Mechanics (1987), Springer), 99-122
[71] Chaboche, J.-L., Cyclic viscoplastic constitutive equations, part I: A thermodynamically consistent formulation (1993) · Zbl 0816.73014
[72] McDowell, David L., A nonlinear kinematic hardening theory for cyclic thermoplasticity and thermoviscoplasticity, Int. J. Plast., 8, 6, 695-728 (1992) · Zbl 0774.73027
[73] Josefson, B. L.; Stigh, U.; Hjelm, H. E., A nonlinear kinematic hardening model for elastoplastic deformations in grey cast iron (1995)
[74] Desmorat, Rodrigue, Non-saturating nonlinear kinematic hardening laws, C. R. Méc., 338, 3, 146-151 (2010) · Zbl 1300.74010
[75] Kadashevich, Iu I.; Novozhilov, V. V., The theory of plasticity which takes into account residual microstresses, J. Appl. Math. Mech., 22, 1, 104-118 (1958) · Zbl 0087.18602
[76] Armstrong, Peter J.; Frederick, C. O., A Mathematical Representation of the Multiaxial Bauschinger Effect, Vol. 731 (1966), Berkeley Nuclear Laboratories Berkeley: Berkeley Nuclear Laboratories Berkeley CA
[77] Xiao, Yuzhong; Chen, Jun; Cao, Jian, A generalized thermodynamic approach for modeling nonlinear hardening behaviors, Int. J. Plast., 38, 102-122 (2012)
[78] As’ ad, Faisal; Avery, Philip; Farhat, Charbel, A mechanics-informed artificial neural network approach in data-driven constitutive modeling, Internat. J. Numer. Methods Engrg., 123, 12, 2738-2759 (2022) · Zbl 1528.74114
[79] Huang, Shenglin; He, Zequn; Reina, Celia, Variational Onsager Neural Networks (VONNs): A thermodynamics-based variational learning strategy for non-equilibrium PDEs, J. Mech. Phys. Solids, 163, Article 104856 pp. (2022)
[80] Simo, Juan C.; Hughes, Thomas J. R., Computational Inelasticity, Vol. 7 (2006), Springer Science & Business Media
[81] Wriggers, Peter, Nonlinear Finite Element Methods (2008), Springer Science & Business Media · Zbl 1153.74001
[82] de Souza Neto, Eduardo A.; Peric, Djordje; Owen, David R. J., Computational Methods for Plasticity: Theory and Applications (2011), John Wiley & Sons
[83] Ypma, Tjalling J., Historical development of the Newton-Raphson method, SIAM Rev., 37, 4, 531-551 (1995) · Zbl 0842.01005
[84] Zhang, Jingzhao; He, Tianxing; Sra, Suvrit; Jadbabaie, Ali, Why gradient clipping accelerates training: A theoretical justification for adaptivity (2019), arXiv preprint arXiv:1905.11881
[85] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 1026-1034.
[86] Shao, Jie; Hu, Kai; Wang, Changhu; Xue, Xiangyang; Raj, Bhiksha, Is normalization indispensable for training deep neural network?, Adv. Neural Inf. Process. Syst., 33, 13434-13444 (2020)
[87] Gnanasambandam, Raghav; Shen, Bo; Chung, Jihoon; Yue, Xubo, Self-scalable Tanh (Stan): Faster convergence and better generalization in physics-informed neural networks (2022), arXiv preprint arXiv:2204.12589
[88] Jagtap, Ameya D.; Karniadakis, George Em, How important are activation functions in regression and classification? A survey, performance comparison, and future directions (2022), arXiv preprint arXiv:2209.02681 · Zbl 07561079
[89] Paszke, Adam; Gross, Sam; Massa, Francisco; Lerer, Adam; Bradbury, James; Chanan, Gregory; Killeen, Trevor; Lin, Zeming; Gimelshein, Natalia; Antiga, Luca; Desmaison, Alban; Kopf, Andreas; Yang, Edward; DeVito, Zachary; Raison, Martin; Tejani, Alykhan; Chilamkurthy, Sasank; Steiner, Benoit; Fang, Lu; Bai, Junjie; Chintala, Soumith, PyTorch: An imperative style, high-performance deep learning library, (Wallach, H.; Larochelle, H.; Beygelzimer, A.; d’Alché-Buc, F.; Fox, E.; Garnett, R., Advances in Neural Information Processing Systems 32 (2019), Curran Associates, Inc.), 8024-8035
[90] Loshchilov, Ilya; Hutter, Frank, Decoupled weight decay regularization (2017), arXiv preprint arXiv:1711.05101
[91] Ohno, N.; Wang, J.-D., Kinematic hardening rules for simulation of ratchetting behavior, Eur. J. Mech. A Solids, 13, 4, 519-531 (1994) · Zbl 0825.73172
[92] Furukawa, Tomonari; Yagawa, Genki, Inelastic constitutive parameter identification using an evolutionary algorithm with continuous individuals, Internat. J. Numer. Methods Engrg., 40, 6, 1071-1090 (1997) · Zbl 0888.73075
[93] Jenab, Arash; Sarraf, Iman Sari; Green, Daniel E.; Rahmaan, Taamjeed; Worswick, Michael J., The use of genetic algorithm and neural network to predict rate-dependent tensile flow behaviour of AA5182-O sheets, Mater. Des., 94, 262-273 (2016)
[94] Fernández, José R.; López-Campos, José A.; Segade, Abraham; Vilán, JA, A genetic algorithm for the characterization of hyperelastic materials, Appl. Math. Comput., 329, 239-250 (2018) · Zbl 1427.74027
[95] Yaghoobi, Mohammadreza; Ganesan, Sriram; Sundar, Srihari; Lakshmanan, Aaditya; Rudraraju, Shiva; Allison, John E.; Sundararaghavan, Veera, PRISMS-plasticity: An open-source crystal plasticity finite element software, Comput. Mater. Sci., 169, Article 109078 pp. (2019)
[96] Rohatgi, Ankit, WebPlotDigitizer (2017), Austin: Austin Texas, USA
[97] Wang, Jiachang; Shu, Ganping; Xu, Xiu; Dong, Shutong; Zheng, Baofeng, Study on mechanical properties of high strength sorbite stainless steel S600E under monotonic and cyclic loadings, (Structures, Vol. 34, 34 (2021), Elsevier), 2665-2678
[98] Chen, Yiyi; Sun, Wei; Chan, Tak-Ming, Cyclic stress-strain behavior of structural steel with yieldstrength up to 460 N/mm2, Front. Struct. Civ. Eng., 8, 2, 178-186 (2014)
[99] Fuhg, Jan N.; Fau, Amélie; Nackenhorst, Udo, State-of-the-art and comparative review of adaptive sampling methods for kriging, Arch. Comput. Methods Eng., 1-59 (2020)
[100] Ratku, Antal; Neumann, Dirk, Derivatives of feed-forward neural networks and their application in real-time market risk management, OR Spectrum, 1-19 (2022)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.