×

Opening the black box: low-dimensional dynamics in high-dimensional recurrent neural networks. (English) Zbl 1269.92007

Summary: Recurrent neural networks (RNNs) are useful tools for learning nonlinear relationships between time-varying inputs and outputs with complex temporal dependencies. Recently developed algorithms have been successful at training RNNs to perform a wide variety of tasks, but the resulting networks have been treated as black boxes: their mechanism of operation remains unknown. We explore the hypothesis that fixed points, both stable and unstable, and the linearized dynamics around them, can reveal crucial aspects of how RNNs implement their computations. Further, we explore the utility of linearization in areas of the phase space that are not true fixed points but merely points of very slow movement. We present a simple optimization technique that is applied to trained RNNs to find the fixed and slow points of their dynamics. Linearization around these slow regions can be used to explore, or reverse-engineer, the behavior of the RNN. We describe the technique, illustrate it using simple examples, and finally showcase it on three high-dimensional RNN examples: a 3-bit flip-flop device, an input-dependent sine wave generator, and a two-point moving average. In all cases, the mechanisms of trained networks could be inferred from the sets of fixed and slow points and the linearized dynamics around them.

MSC:

92B20 Neural networks for/in biological studies, artificial life and related topics
92-08 Computational methods for problems pertaining to biology
90C90 Applications of mathematical programming
Full Text: DOI

References:

[1] Ahrens M. B., Nature 485 (7399) pp 471– (2012)
[2] DOI: 10.1109/72.279181 · doi:10.1109/72.279181
[3] DOI: 10.1017/CBO9780511804441 · doi:10.1017/CBO9780511804441
[4] DOI: 10.1073/pnas.79.8.2554 · Zbl 1369.92007 · doi:10.1073/pnas.79.8.2554
[5] DOI: 10.1126/science.3755256 · doi:10.1126/science.3755256
[6] DOI: 10.1103/PhysRevLett.93.238104 · doi:10.1103/PhysRevLett.93.238104
[7] DOI: 10.1126/science.1091277 · doi:10.1126/science.1091277
[8] DOI: 10.1073/pnas.0705546104 · doi:10.1073/pnas.0705546104
[9] DOI: 10.1523/JNEUROSCI.2358-09.2009 · doi:10.1523/JNEUROSCI.2358-09.2009
[10] DOI: 10.1371/journal.pcbi.0020165 · doi:10.1371/journal.pcbi.0020165
[11] DOI: 10.1162/089976602760407955 · Zbl 1057.68618 · doi:10.1162/089976602760407955
[12] DOI: 10.1126/science.1104171 · doi:10.1126/science.1104171
[13] Martens J., Proceedings of the 27th International Conference on Machine Learning (2010)
[14] Martens J., Proceedings of the 28th International Conference on Machine Learning (2011)
[15] DOI: 10.1017/CBO9780511803260 · Zbl 1006.37001 · doi:10.1017/CBO9780511803260
[16] DOI: 10.1523/JNEUROSCI.5540-09.2010 · doi:10.1523/JNEUROSCI.5540-09.2010
[17] DOI: 10.1371/journal.pcbi.1000072 · doi:10.1371/journal.pcbi.1000072
[18] DOI: 10.1038/20939 · doi:10.1038/20939
[19] Rumelhart D., Parallel Distributed Processing 1 pp 319– (1985)
[20] DOI: 10.1016/j.neuron.2003.08.011 · doi:10.1016/j.neuron.2003.08.011
[21] Strogatz S. H., Nonlinear dynamics and chaos, with applications to physics, biology, chemistry, and engineering (1994) · Zbl 1343.37001
[22] DOI: 10.1016/j.neuron.2009.07.018 · doi:10.1016/j.neuron.2009.07.018
[23] DOI: 10.1016/j.neuron.2008.09.034 · doi:10.1016/j.neuron.2008.09.034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.