×

Representation varieties of algebras with nodes. (English) Zbl 1519.16007

Suppose \(k\) is an algebraically closed field, \(Q\) is a finite quiver, \(I\) is an admissible ideal of the quiver algebra \(kQ\), and \(A=kQ/I\). For each dimension vector \(\mathbf{d}\) of \(A\), there is a representation variety \(\mathrm{rep}_A(\mathbf{d})\), defined as a product of matrix varieties on which a product of general linear groups \(\mathrm{GL}(\mathbf{d})\) acts. In this paper, the authors relate the representation varieties for algebras that are related by splitting nodes. The technique of node splitting was introduced by R. Martinez-Villa [Lect. Notes Math. 832, 396–431 (1980; Zbl 0443.16019)]. A node \(x\) of \(A\) can be split by a certain local operation around \(x\), resulting in a new algebra \(A^x\) with one fewer node. The authors relate the representation varieties of \(A\) and \(A^x\) by a homogeneous fibre bundle construction and collapsing maps, in the sense of G. R. Kempf [Invent. Math. 37, 229–239 (1976; Zbl 0338.14015)]. This allows them to relate their singularities and to relate defining equations of the prime ideals of equivariant closed subvarieties. By splitting one node at a time, the authors demonstrate that there are many nonhereditary algebras \(A\) such that the irreducible components of \(\mathrm{rep}_A(\mathbf{d})\) are all normal with rational singularities. Moreover, they obtain explicit generators of the prime defining ideals of these irreducible components. In particular, this class of algebras contains all those whose radical square is zero.

MSC:

16G20 Representations of quivers and partially ordered sets
13C40 Linkage, complete intersections and determinantal ideals
14M12 Determinantal varieties
14M05 Varieties defined by ring conditions (factorial, Cohen-Macaulay, seminormal)

References:

[1] Abeasis, S., Del Fra, A.andKraft, H., The geometry of representations of \({A}_m\), Math. Ann.256(3) (1981), 401-418. · Zbl 0477.14027
[2] Assem, I., Simson, D.andSkowroński, A., Elements of the Representation Theory of Associative Algebras, Vol. 1, London Mathematical Society Student Texts, 65 (Cambridge University Press, Cambridge, UK, 2006). · Zbl 1092.16001
[3] Auslander, M., Reiten, I.andSmalø, S. O., Representation Theory of Artin Algebras, Cambridge Studies in Advanced Mathematics, 36 (Cambridge University Press, Cambridge, UK, 1997). Corrected reprint of the 1995 original.
[4] Babson, E., Huisgen-Zimmermann, B.andThomas, R., Generic representation theory of quivers with relations, J. Algebra322(6) (2009), 1877-1918. · Zbl 1217.16013
[5] Barot, M.andSchröer, J., Module varieties over canonical algebras, J. Algebra246(1) (2001), 175-192. · Zbl 1036.16010
[6] Bleher, F. M., Chinburg, T.andHuisgen-Zimmermann, B., The geometry of finite dimensional algebras with vanishing radical square, J. Algebra425 (2015), 146-178. · Zbl 1358.16011
[7] Bobiński, G., Normality of maximal orbit closures for Euclidean quivers, Canad. J. Math.64(6) (2012), 1222-1247. · Zbl 1288.16015
[8] Bobiński, G.andSchröer, J., Algebras with irreducible module varieties I, Adv. Math.343 (2019), 624-639. · Zbl 1470.16023
[9] Bobiński, G.andSchröer, J., Algebras with irreducible module varieties II: Two vertex case, J. Algebra518 (2019), 384-411. · Zbl 1470.16031
[10] Bobiński, G., Algebras with irreducible module varieties III: Birkhoff varieties, Int. Math. Res. Not. IMRN.2021(4) (2021), 2497-2525. · Zbl 1509.16015
[11] Bobiński, G.andZwara, G., Normality of orbit closures for Dynkin quivers of type \({A}_n\), Manuscripta Math.105(1) (2001), 103-109. · Zbl 1031.16012
[12] Bobiński, G.andZwara, G., Schubert varieties and representations of Dynkin quivers, Colloq. Math.94(2) (2002), 285-309. · Zbl 1013.14011
[13] Bondal, A. I., Helices, representations of quivers and Koszul algebras, in Helices and Vector Bundles, London Mathematical Society Lecture Note Series, 148, pp. 75-95 (Cambridge University Press, Cambridge, UK, 1990). · Zbl 0742.14010
[14] Bongartz, K., A geometric version of the Morita equivalence, J. Algebra139(1) (1991), 159-171. · Zbl 0787.16011
[15] Bongartz, K., Some geometric aspects of representation theory, in Algebras and Modules, pp. 1-27 (American Mathematical Society, Providence, RI, 1998). · Zbl 0915.16008
[16] Boutot, J.-F., Singularités rationalles et quotients par les groupes réductifs, Invent. Math.88 (1987), 65-68. · Zbl 0619.14029
[17] Brion, M., Representations of quivers, in Geometric Methods in Representation Theory. I, Séminaires et Congrès, 24, pp. 103-144 (Société mathématique de France, Paris, 2012). · Zbl 1295.16007
[18] Carroll, A. T., Generic modules for gentle algebras, J. Algebra437 (2015), 177-201. · Zbl 1347.16010
[19] Carroll, A. T.andChindris, C., Moduli spaces of modules of Schur-tame algebras, Algebr. Represent. Theory18(4) (2015), 961-976. · Zbl 1351.16019
[20] Carroll, A. T., Chindris, C., Kinser, R.andWeyman, J., Moduli spaces of representations of special biserial algebras, Int. Math. Res. Not. IMRN2020(2) (2020), 403-421. · Zbl 1490.16029
[21] Chindris, C., On the invariant theory for tame tilted algebras, Algebra Number Theory7(1) (2013), 193-214. · Zbl 1297.16016
[22] Chindris, C.andKinser, R., Decomposing moduli of representations of finite-dimensional algebras, Math. Ann.372(1) (2018), 555-580. · Zbl 1434.16006
[23] Chindris, C., Kinser, R.andWeyman, J., Module varieties and representation type of finite-dimensional algebras, Int. Math. Res. Not. IMRN2020(3) (2015), 631-650. · Zbl 1377.16007
[24] Crawley-Boevey, W., Decomposition of Marsden-Weinstein reductions for representations of quivers, Compos. Math.130(2) (2002), 225-239. · Zbl 1031.16013
[25] Crawley-Boevey, W.andSchröer, J., Irreducible components of varieties of modules, J. Reine Angew. Math.553 (2002), 201-220. · Zbl 1062.16019
[26] De Concini, C.andStrickland, E., On the variety of complexes, Adv. Math.41 (1981), 57-77. · Zbl 0471.14026
[27] De La Peña, J. A., On the dimension of the module-varieties of tame and wild algebras, Comm. Algebra19(6) (1991), 1795-1807. · Zbl 0818.16013
[28] Derksen, H.andKemper, G., Computational Invariant Theory: Invariant Theory and Algebraic Transformation Groups, I, Enclopaedia of Mathematical Sciences, 130 (Springer-Verlag, Berlin, 2002). · Zbl 1011.13003
[29] Derksen, H.andWeyman, J., On the canonical decomposition of quiver representations, Compos. Math.133(3) (2002), 245-265. · Zbl 1016.16007
[30] Derksen, H.andWeyman, J., The combinatorics of quiver representations, Ann. Inst. Fourier (Grenoble)61(3) (2011), 1061-1131. · Zbl 1271.16016
[31] Derksen, H.andWeyman, J., An Introduction to Quiver Representations, Graduate Studies in Mathematics, 184 (American Mathematical Society, Providence, RI, 2017). · Zbl 1426.16001
[32] Gabriel, P.andRoiter, A. V., Representations of Finite-Dimensional Algebras (Springer-Verlag, Berlin, 1997). Reprint of the 1992 English translation from the Russian, with a chapter by Keller, B..
[33] Geiss, C.andSchröer, J., Varieties of modules over tubular algebras, Colloq. Math.95(2) (2003), 163-183. · Zbl 1033.16004
[34] Goodearl, K. R.andHuisgen-Zimmermann, B., Closures in varieties of representations and irreducible components, Algebra Number Theory12(2) (2018), 379-410. · Zbl 1420.16008
[35] Gorodentsev, A. L.andRudakov, A. N., Exceptional vector bundles on projective spaces, Duke Math. J.54(1) (1987), 115-130. · Zbl 0646.14014
[36] Hoskins, V., Parallels between moduli of quiver representations and vector bundles over curves, SIGMA Symmetry Integrability Geom.Methods Appl.14(127) (2018), 46. · Zbl 1460.14030
[37] Huisgen-Zimmermann, B., Classifying representations by way of Grassmannians, Trans. Amer. Math. Soc.359(6) (2007), 2687-2719. · Zbl 1184.16013
[38] Huisgen-Zimmermann, B., Fine and coarse moduli spaces in the representation theory of finite dimensional algebras, in Expository Lectures on Representation Theory, Contemporary Mathematics, 607, pp. 1-34 (American Mathematical Society, Providence, RI, 2014). · Zbl 1327.16003
[39] Huisgen-Zimmermann, B.andGoodearl, K. R., Irreducible components of module varieties: Projective equations and rationality, in New Trends in Noncommutative Algebra, Contemporary Mathematics, 562, pp. 141-167 (American Mathematical Society, Providence, RI, 2012). · Zbl 1262.16011
[40] Huisgen-Zimmermann, B.andShipman, I., Irreducible components of varieties of representations: The acyclic case, Math. Z.287(3-4) (2017), 1083-1107. · Zbl 1405.16016
[41] Kac, V. G., Infinite root systems, representations of graphs and invariant theory, Invent. Math.56(1) (1980), 57-92. · Zbl 0427.17001
[42] Kac, V. G., Infinite root systems, representations of graphs and invariant theory. II, J. Algebra78(1) (1982), 141-162. · Zbl 0497.17007
[43] Kempf, G. R., Images of homogeneous vector bundles and varieties of complexes, Bull. Amer. Math. Soc.81(5) (1975), 900-901. · Zbl 0322.14020
[44] Kempf, G. R., On the collapsing of homogeneous bundles, Invent. Math.37(3) (1976), 229-239. · Zbl 0338.14015
[45] King, A. D., Moduli of representations of finite-dimensional algebras, Q. J. Math.45(180) (1994), 515-530. · Zbl 0837.16005
[46] Kinser, R., K-polynomials of type A quiver orbit closures and lacing diagrams, in Representations of Algebras, Contemporary Mathematics, 705, pp. 99-114 (American Mathematical Society, Providence, RI, 2018). · Zbl 1398.14052
[47] Kinser, R.andRajchgot, J., Type \(A\) quiver loci and Schubert varieties, J. Commut. Algebra7(2) (2015), 265-301. · Zbl 1351.14031
[48] Kinser, R.andRajchgot, J., Type \(D\) quiver representation varieties, double Grassmannians, and symmetric varieties, Advances in Mathematics, 376, (2021), 107454. · Zbl 1475.14093
[49] Kinser, R.andWeyman, J., Irreducible components of some module varieties via the Springer resolution, Oberwolfach Rep.11(1) (2014), 475-477.
[50] Lakshmibai, V.andMagyar, P., Degeneracy schemes, quiver schemes, and Schubert varieties, Int. Math. Res. Not. IMRN1998(12) (1998), 627-640. · Zbl 0936.14001
[51] Loc, N. Q.andZwara, G., Modules and quiver representations whose orbit closures are hypersurfaces, Colloq. Math.134(1) (2014), 57-74. · Zbl 1297.14007
[52] Lőrincz, A. C., Singularities of zero sets of semi-invariants for quivers, arXiv:1509.04170, 2015. To appear in J. Commut. Algebra. · Zbl 1495.16016
[53] Lőrincz, A. C., Minimal free resolutions of ideals of minors associated to pairs of matrices, Proc. Amer. Math. Soc.149 (2021), 1857-1873. · Zbl 1460.16015
[54] Lőrincz, A. C., On the collapsing of homogeneous bundles in arbitrary characteristic, Preprint, 2020, arXiv:2008.08270.
[55] Lőrincz, A. C.andWeyman, J., Free resolutions of orbit closures of Dynkin quivers, Trans. Amer. Math. Soc.372 (2019), 2715-2734. · Zbl 1441.13033
[56] Martínez-Villa, R., Algebras stably equivalent to \(l\) -hereditary, in Representation theory, II (Proc. Second Internat. Conf., Carleton Univ., Ottawa, Ont., 1979), Lecture Notes in Mathematics, 832, pp. 396-431 (Springer, Berlin, 1980). · Zbl 0443.16019
[57] Mehta, V. BandTrivedi, V., The variety of circular complexes and \(F\) -splitting, Invent. Math.137 (1999), 449-460. · Zbl 0955.14036
[58] Mehta, V. BandTrivedi, V., Variety of complexes and \(F\) -splitting, J. Algebra215 (1999), 352-365. · Zbl 0929.14030
[59] Mnëv, N. E., The universality theorems on the classification problem of configuration varieties and convex polytopes varieties, in Topology and Geometry—Rohlin Seminar, Lecture Notes in Mathematics, 1346, pp. 527-543 (Springer, Berlin, 1988). · Zbl 0667.52006
[60] Mumford, D., Fogarty, J.andKirwan, F., Geometric Invariant Theory, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2), 34 (Springer-Verlag, Berlin, 1994). · Zbl 0797.14004
[61] Newstead, P. E., Geometric invariant theory, in Moduli Spaces and Vector Bundles, London Mathematical Society Lecture Note Series, 359, pp. 99-127 (Cambridge University Press, Cambridge, UK, 2009). · Zbl 1187.14054
[62] Reineke, M., Moduli of representations of quivers, in Trends in Representation Theory of Algebras and Related Topics, EMS Series of Congress Reports, pp. 589-637 (European Mathematical Society, Zürich, 2008). · Zbl 1206.16009
[63] Riedtmann, C., Rutscho, M.andSmalø, S. O., Irreducible components of module varieties: An example, J. Algebra331 (2011), 130-144. · Zbl 1229.14005
[64] Riedtmann, C.andZwara, G., Orbit closures and rank schemes, Comment. Math. Helv.88(1) (2013), 55-84. · Zbl 1266.14038
[65] Schofield, R., Quiver Representations, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC (Springer, Cham, Switzerland, 2014). · Zbl 1310.16015
[66] Schofield, A., General representations of quivers, Proc. Lond. Math. Soc. (3)65(1) (1992), 46-64. · Zbl 0795.16008
[67] Schröer, J., Varieties of pairs of nilpotent matrices annihilating each other, Comment. Math. Helv.79(2) (2004), 396-426. · Zbl 1058.14067
[68] Strickland, E., On the conormal bundle of the determinantal variety, J. Algebra75 (1982), 523-537. · Zbl 0493.14030
[69] Strickland, E., On the variety of projectors, J. Algebra106 (1987), 135-147. · Zbl 0612.14001
[70] Sutar, K., Orbit closures of source-sink Dynkin quiversInt. Math. Res. Not. IMRN2015(11) (2015), 3423-3444. · Zbl 1320.14064
[71] Timashev, D. A., Homogeneous Spaces and Equivariant Embeddings: Invariant Theory and Algebraic Transformation Groups 8, Encyclopaedia of Mathematical Sciences, 138 (Springer, Heidelberg, Germany, 2011). · Zbl 1237.14057
[72] Weyman, J., The equations of conjugacy classes of nilpotent matrices, Invent. Math.98 (1989), 229-245. · Zbl 0717.20033
[73] Weyman, J., Cohomology of Vector Bundles and Syzygies, Cambridge Tracts in Mathematics, 149 (Cambridge University Press, Cambridge, UK, 2003). · Zbl 1075.13007
[74] Zwara, G., Degenerations for modules over representation-finite algebras, Proc. Amer. Math. Soc.127(5) (1999), 1313-1322. · Zbl 0927.16008
[75] Zwara, G., Singularities of orbit closures in module varieties, in Representations of Algebras and Related Topics, EMS Series of Congress Reports, pp. 661-725 (European Mathematical Society, Zürich, 2011). · Zbl 1307.14069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.