×

Classifying representations by way of Grassmannians. (English) Zbl 1184.16013

Summary: Let \(\Lambda\) be a finite-dimensional algebra over an algebraically closed field. Criteria are given which characterize existence of a fine or coarse moduli space classifying, up to isomorphism, the representations of \(\Lambda\) with fixed dimension \(d\) and fixed squarefree top \(T\). Next to providing a complete theoretical picture, some of these equivalent conditions are readily checkable from quiver and relations of \(\Lambda\). In the case of existence of a moduli space – unexpectedly frequent in light of the stringency of fine classification – this space is always projective and, in fact, arises as a closed subvariety \(\mathfrak{Grass}^T_d\) of a classical Grassmannian. Even when the full moduli problem fails to be solvable, the variety \(\mathfrak{Grass}^T_d\) is seen to have distinctive properties recommending it as a substitute for a moduli space. As an application, a characterization of the algebras having only finitely many representations with fixed simple top is obtained; in this case of ‘finite local representation type at a given simple \(T\)’, the radical layering \((J^lM/J^{l+1}M)_{l\geq 0}\) is shown to be a classifying invariant for the modules with top \(T\). This relies on the following general fact obtained as a byproduct: proper degenerations of a local module \(M\) never have the same radical layering as \(M\).

MSC:

16G10 Representations of associative Artinian rings
16G20 Representations of quivers and partially ordered sets
14D20 Algebraic moduli problems, moduli of vector bundles
14D22 Fine and coarse moduli spaces
16G60 Representation type (finite, tame, wild, etc.) of associative algebras

References:

[1] E. Babson, B. Huisgen-Zimmermann, and R. Thomas, Generic representation theory of quivers with relations, in preparation. · Zbl 1217.16013
[2] Klaus Bongartz, On degenerations and extensions of finite-dimensional modules, Adv. Math. 121 (1996), no. 2, 245 – 287. · Zbl 0862.16007 · doi:10.1006/aima.1996.0053
[3] Klaus Bongartz, A note on algebras of finite uniserial type, J. Algebra 188 (1997), no. 2, 513 – 515. · Zbl 0884.16007 · doi:10.1006/jabr.1996.6845
[4] Klaus Bongartz, Some geometric aspects of representation theory, Algebras and modules, I (Trondheim, 1996) CMS Conf. Proc., vol. 23, Amer. Math. Soc., Providence, RI, 1998, pp. 1 – 27. · Zbl 0915.16008
[5] Klaus Bongartz and Birge Huisgen-Zimmermann, The geometry of uniserial representations of algebras. II. Alternate viewpoints and uniqueness, J. Pure Appl. Algebra 157 (2001), no. 1, 23 – 32. · Zbl 0982.16010 · doi:10.1016/S0022-4049(00)00031-1
[6] Klaus Bongartz and Birge Huisgen-Zimmermann, Varieties of uniserial representations. IV. Kinship to geometric quotients, Trans. Amer. Math. Soc. 353 (2001), no. 5, 2091 – 2113. · Zbl 1005.16012
[7] Armand Borel, Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. · Zbl 0726.20030
[8] Lutz Hille, Tilting line bundles and moduli of thin sincere representations of quivers, An. Ştiinţ. Univ. Ovidius Constanţa Ser. Mat. 4 (1996), no. 2, 76 – 82. Representation theory of groups, algebras, and orders (Constanţa, 1995). · Zbl 0879.16005
[9] Birge Huisgen-Zimmermann, The geometry of uniserial representations of finite-dimensional algebra. I, J. Pure Appl. Algebra 127 (1998), no. 1, 39 – 72. · Zbl 0951.16005 · doi:10.1016/S0022-4049(96)00184-3
[10] -, Top-stable degenerations of finite dimensional representations I, posted at www.math.ucsb.edu/\( \sim \)birge/papers.html. · Zbl 1207.16010
[11] James E. Humphreys, Linear algebraic groups, Springer-Verlag, New York-Heidelberg, 1975. Graduate Texts in Mathematics, No. 21. · Zbl 0325.20039
[12] A. D. King, Moduli of representations of finite-dimensional algebras, Quart. J. Math. Oxford Ser. (2) 45 (1994), no. 180, 515 – 530. · Zbl 0837.16005 · doi:10.1093/qmath/45.4.515
[13] Hanspeter Kraft, Geometrische Methoden in der Invariantentheorie, Aspects of Mathematics, D1, Friedr. Vieweg & Sohn, Braunschweig, 1984 (German). · Zbl 0569.14003
[14] Lieven Le Bruyn and Aidan Schofield, Rational invariants of quivers and the ring of matrixinvariants, Perspectives in ring theory (Antwerp, 1987) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 233, Kluwer Acad. Publ., Dordrecht, 1988, pp. 21 – 29. · Zbl 0743.16011
[15] David Mumford, Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, Band 34, Springer-Verlag, Berlin-New York, 1965. · Zbl 0147.39304
[16] P. E. Newstead, Introduction to moduli problems and orbit spaces, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 51, Tata Institute of Fundamental Research, Bombay; by the Narosa Publishing House, New Delhi, 1978. · Zbl 0411.14003
[17] Christine Riedtmann, Degenerations for representations of quivers with relations, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 2, 275 – 301. · Zbl 0603.16025
[18] Maxwell Rosenlicht, On quotient varieties and the affine embedding of certain homogeneous spaces, Trans. Amer. Math. Soc. 101 (1961), 211 – 223. · Zbl 0111.17902
[19] Maxwell Rosenlicht, Questions of rationality for solvable algebraic groups over nonperfect fields, Ann. Mat. Pura Appl. (4) 61 (1963), 97 – 120 (English, with Italian summary). · Zbl 0126.16901 · doi:10.1007/BF02412850
[20] Aidan Schofield, Birational classification of moduli spaces of representations of quivers, Indag. Math. (N.S.) 12 (2001), no. 3, 407 – 432. · Zbl 1013.16005 · doi:10.1016/S0019-3577(01)80019-7
[21] Grzegorz Zwara, Degenerations for modules over representation-finite algebras, Proc. Amer. Math. Soc. 127 (1999), no. 5, 1313 – 1322. · Zbl 0927.16008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.