×

A phase field method based on multi-level correction for eigenvalue topology optimization. (English) Zbl 1507.74506

Summary: In topology optimization, finite element methods are usually required to solve state equations repeatedly. Considerable computational costs are required for iterative solvers to nonlinear state constraints, such as eigenvalue problems, especially in 3D with large-scale degrees of freedom. Recently, multi-level correction methods are developed to improve efficiency in solving nonlinear partial differential equations including eigenvalue problems. These methods involve a multi-step correction in a sequence of finite element spaces and can keep accuracy of the eigenpair approximation. The overall computational cost is nearly equivalent to that of solving linear source problems. In this paper, we propose a new phase field method based on multi-level correction for eigenfrequency topology optimization. Both eigenfrequency optimization problems associated with a scalar type elliptic operator and a vectorial type elastic operator are considered. The Allen-Cahn phase field equation discretized by a semi-implicit scheme and finite-elements can have topological and shape changes in arbitrary shaped design regions. The proposed optimization algorithm based on a multi-level correction solver for eigenvalue problems improves efficiency of the traditional phase field method. A variety of numerical examples in 2D and 3D are presented to illustrate the effectiveness and efficiency of the algorithm.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
65K10 Numerical optimization and variational techniques
49Q10 Optimization of shapes other than minimal surfaces
49R05 Variational methods for eigenvalues of operators
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74P10 Optimization of other properties in solid mechanics
Full Text: DOI

References:

[1] Haug, E. J.; Choi, K. K.; Komkov, V., Design Sensitivity Analysis of Structural Systems (1986), Academic Press · Zbl 0618.73106
[2] Bendsøe, M. P.; Sigmund, O., Topology Optimization: Theory, Methods and Applications (2003), Springer
[3] Guo, X.; Zhou, J.; Zhang, W.; Du, Z.; Liu, C.; Liu, Y., Self-supporting structure design in additive manufacturing through explicit topology optimization, Comput. Methods Appl. Mech. Engrg., 323, 27-63 (2017) · Zbl 1439.74273
[4] Luo, Y.; Sigmund, O.; Li, Q.; Liu, S., Additive manufacturing oriented topology optimization of structures with self-supported enclosed voids, Comput. Methods Appl. Mech. Engrg., 372, Article 113385 pp. (2020) · Zbl 1506.74289
[5] Giraldo-Londoño, O.; Mirabella, L.; Dalloro, L.; Paulino, G. H., Multi-material thermomechanical topology optimization with applications to additive manufacturing: Design of main composite part and its support structure, Comput. Methods Appl. Mech. Engrg., 363, Article 112812 pp. (2020) · Zbl 1436.74056
[6] Takezawa, A.; To, A. C.; Chen, Q.; Liang, X.; Dugast, F.; Zhang, X.; Kitamura, M., Sensitivity analysis and lattice density optimization for sequential inherent strain method used in additive manufacturing process, Comput. Methods Appl. Mech. Engrg., 370, Article 113231 pp. (2020) · Zbl 1506.74246
[7] Bihr, M.; Allaire, G.; Betbeder-Lauque, X.; Bogosel, B.; Bordeu, F.; Querois, J., Part and supports optimization in metal powder bed additive manufacturing using simplified process simulation, Comput. Methods Appl. Mech. Engrg., 395, Article 114975 pp. (2022) · Zbl 1507.74288
[8] Zhang, X. S.; Chi, H.; Paulino, G. H., Adaptive multi-material topology optimization with hyperelastic materials under large deformations: A virtual element approach, Comput. Methods Appl. Mech. Engrg., 370, Article 112976 pp. (2020) · Zbl 1506.74314
[9] Feppon, F.; Allaire, G.; Dapogny, C.; Jolivet, P., Body-fitted topology optimization of 2D and 3D fluid-to-fluid heat exchangers, Comput. Methods Appl. Mech. Engrg., 376, Article 113638 pp. (2021) · Zbl 1506.74270
[10] Bendsoe, M. P.; Kikuchi, N., Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl. Mech. Engrg., 71, 197-224 (1988) · Zbl 0671.73065
[11] Bendsoe, M. P., Optimal shape design as a material distribution problem, Struct. Optim., 1, 193-202 (1989)
[12] Novotny, A.; Sokołowski, J., An introduction to the topological derivative method (2020) · Zbl 1444.49001
[13] Sethian, J. A.; Wiegmann, A., Structural boundary design via level set and immersed interface methods, J. Comput. Phys., 163, 489-528 (2000) · Zbl 0994.74082
[14] Allaire, G.; Jouve, F.; Toader, A.-M., A level-set method for shape optimization, C. R. Math., 334, 1125-1130 (2002) · Zbl 1115.49306
[15] Wang, M. Y.; Wang, X.; Guo, D., A level set method for structural topology optimization, Comput. Methods Appl. Mech. Engrg., 192, 227-246 (2003) · Zbl 1083.74573
[16] Allaire, G.; Jouve, F., A level-set method for vibration and multiple loads structural optimization, Comput. Methods Appl. Mech. Engrg., 194, 3269-3290 (2005) · Zbl 1091.74038
[17] Bourdin, B.; Chambolle, A., Design-dependent loads in topology optimization, ESAIM Contr. Optim. Calc. Var., 9, 19-48 (2003) · Zbl 1066.49029
[18] Zhang, W.; Li, D.; Kang, P.; Guo, X.; Youn, S. K., Explicit topology optimization using IGA-based moving morphable void (MMV) approach, Comput. Methods Appl. Mech. Engrg., 360, Article 112685 pp. (2020) · Zbl 1441.74182
[19] Zhang, W.; Yan, X.; Meng, Y.; Zhang, C.; Youn, S. K.; Guo, X., Flexoelectric nanostructure design using explicit topology optimization, Comput. Methods Appl. Mech. Engrg., 394, Article 114943 pp. (2022) · Zbl 1507.74345
[20] Chi, H.; Zhang, Y.; Tang, T. L.E.; Mirabella, L.; Dalloro, L.; Song, L.; Paulino, G. H., Universal machine learning for topology optimization, Comput. Methods Appl. Mech. Engrg., 375, Article 112739 pp. (2021) · Zbl 1506.74267
[21] Bendse, M. P.; Sigmund, O., Material interpolation schemes in topology optimization, Arch. Appl. Mech., 69, 635-654 (1999) · Zbl 0957.74037
[22] Osher, S.; Sethian, J. A., Front propagation with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79, 12-49 (1988) · Zbl 0659.65132
[23] Osher, S.; Santosa, F., Level set methods for optimization problems involving geometry and constraints I frequencies of a two-density inhomogeneous drum, J. Comput. Phys., 171, 272-288 (2001) · Zbl 1056.74061
[24] Zhu, S.; Hu, X.; Wu, Q., A level set method for shape optimization in semilinear elliptic problems, J. Comput. Phys., 355, 104-120 (2018) · Zbl 1380.49063
[25] Sokołowski, J.; Zolesio, J.-P., Introduction to Shape Optimization: Shape Sensitivity Analysis (1992), Springer: Springer Heidelberg · Zbl 0761.73003
[26] Liu, P.; Shi, L.; Kang, Z., Multi-material structural topology optimization considering material interfacial stress constraints, Comput. Methods Appl. Mech. Engrg., 363, Article 112887 pp. (2020) · Zbl 1436.74059
[27] He, L.; Kao, C.-Y.; Osher, S., Incorporating topological derivatives into shape derivatives based level set methods, J. Comput. Phys., 225, 891-909 (2007) · Zbl 1122.65057
[28] Wang, Y.; Kang, Z., Concurrent two-scale topological design of multiple unit cells and structure using combined velocity field level set and density model, Comput. Methods Appl. Mech. Engrg., 347, 340-364 (2019) · Zbl 1440.74318
[29] Sigmund, O.; Maute, K., Topology optimization approaches a comparative review, Struct. Multidisc. Optim., 48, 1031-1055 (2013)
[30] Wang, M. Y.; Zhou, S., Phase field: a variational method for structural topology optimization, Comput. Model. Eng. Sci., 6, 547-566 (2004) · Zbl 1152.74382
[31] Zhou, S.; Wang, M.; Source, C., 3D multi-material structural topology optimization with the generalized Cahn-Hilliard equations, Comput. Model. Eng. Sci., 16, 83-102 (2006)
[32] Burger, M.; Stainko, R., Phase-field relaxation of topology optimization with local stress constraints, SIAM J. Control Optim., 45, 1447-1466 (2006) · Zbl 1116.74053
[33] Takezawa, A.; Nishiwaki, S.; Kitamura, M., Shape and topology optimization based on the phase field method and sensitivity analysis, J. Comput. Phys., 229, 2697-2718 (2010) · Zbl 1185.65109
[34] Dede’, L.; Borden, M. J.; Hughes, T. J.R., Isogeometric Analysis for topology optimization with a phase field model, Arch. Comput. Methods Eng., 19, 427-465 (2012) · Zbl 1354.74224
[35] Allen, S. M.; Cahn, J. W., A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall., 27 (1979)
[36] Cahn, J. W.; Hilliard, J. E., Free energy of a nonuniform system I. interfacial free energy, J. Chem. Phys., 28, 258-267 (1958) · Zbl 1431.35066
[37] Modica, L., The gradient theory of phase transitions and the minimal interface criterion, Arch. Ration. Mech. Anal., 98, 123-142 (1987) · Zbl 0616.76004
[38] Blank, L.; Hecht, C.; Garcke, H.; Rupprecht, C., Sharp interface limit for a phase field model in structural optimization, SIAM J. Control Optim., 54, 1558-1584 (2016) · Zbl 1348.35259
[39] Yamada, T.; Izui, K.; Nishiwaki, S.; Takezawa, A., A topology optimization method based on the level set method incorporating a fictitious interface energy, Comput. Methods Appl. Mech. Engrg., 199, 2876-2891 (2010) · Zbl 1231.74365
[40] Gain, A. L.; Paulino, G. H., Phase-field based topology optimization with polygonal elements: a finite volume approach for the evolution equation, Struct. Multidiscip. Optim., 46, 327-342 (2012) · Zbl 1274.74332
[41] Penzler, P.; Rumpf, M.; Wirth, B., A phase-field model for compliance shape optimization in nonlinear elasticity, ESAIM: Control Optim. Calc. Var., 18, 229-258 (2012) · Zbl 1251.49054
[42] Takezawa, A.; Kitamura, M., Phase field method to optimize dielectric devices for electromagnetic wave propagation, J. Comput. Phys., 257, 216-240 (2014) · Zbl 1349.82123
[43] Wu, S.; Hu, X.; Zhu, S., A multi-mesh finite element method for the phase-field based photonic band structure optimization, J. Comput. Phys., 357, 324-337 (2018) · Zbl 1382.65331
[44] Zhang, X.; Takezawa, A.; Kang, Z., Robust topology optimization of vibrating structures considering random diffuse regions via a phase-field method, Comput. Methods Appl. Mech. Engrg., 344, 766-797 (2019) · Zbl 1440.74331
[45] Garcke, H.; Hinze, M.; Kahle, C.; Lam, K. F., A phase field approach to shape optimization in Navier-Stokes flow with integral state constraints, Adv. Comput. Math., 44, 1345-1383 (2018) · Zbl 1406.35274
[46] Henrot, A., Extremum Problems for Eigenvalues of Elliptic Operators (2006), Birkhäuser Verlag · Zbl 1109.35081
[47] Allaire, G.; Aubry, S.; Jouve, F., Eigenfrequency optimization in optimal design, Comput. Methods Appl. Mech. Engrg., 190, 3565-3579 (2001) · Zbl 1004.74063
[48] de Gournay, F., Velocity extension for the level-set method and multiple eigenvalues in shape optimization, SIAM J. Control Optim., 45, 1, 343-367 (2006) · Zbl 1108.74046
[49] Pedersen, N. L., Maximization of eigenvalues using topology optimization, Struct. Multidiscip. Optim., 20, 2-11 (2000)
[50] Li, Z.; Shi, T.; Xia, Q., Eliminate localized eigenmodes in level set based topology optimization for the maximization of the first eigenfrequency of vibration, Adv. Eng. Softw., 107, 59-70 (2017)
[51] Xia, Q.; Shi, T.; Wang, M. Y., A level set based shape and topology optimization method for maximizing the simple or repeated first eigenvalue of structure vibration, Struct. Multidiscip. Optim., 43, 473-485 (2011) · Zbl 1274.74416
[52] Xu, M.; Wang, S.; Xie, X., Level set-based isogeometric topology optimization for maximizing fundamental eigenfrequency, Front. Mech. Eng., 14, 222-234 (2019)
[53] Zhang, Z.; Liang, K.; Cheng, X., A monotonic algorithm for eigenvalue optimization in shape design problems of multi-density inhomogeneous materials, Commun. Comput. Phys., 8, 565-584 (2010) · Zbl 1364.65133
[54] Zhu, S.; Liu, C.; Wu, Q., Binary level set methods for topology and shape optimization of a two-density inhomogeneous drum, Comput. Methods Appl. Mech. Engrg., 199, 2970-2986 (2010) · Zbl 1231.74368
[55] Liu, C.; Hu, X.; Zhu, S., A two-grid binary level set method for structural topology optimization, Eng. Optim. (2022)
[56] Antunes, P. R.S.; Freitas, P., Numerical optimization of low eigenvalues of the Dirichlet and Neumann Laplacians, J. Optim. Theory Appl., 154, 235-257 (2012) · Zbl 1252.90076
[57] Buttazzo, G.; Belhachmi, Z.; Bucur, D.; Sac-Epee, J. M., Shape optimization problems for eigenvalues of elliptic operators, ZAMM Z. Angew. Math. Mech., 86, 171-184 (2006) · Zbl 1087.49032
[58] Qian, M.; Zhu, S., A level set method for Laplacian eigenvalue optimization subject to geometric constraints, Comput. Optim. Appl., 82, 499-524 (2022) · Zbl 1493.90192
[59] Ferrari, F.; Lazarov, B. S.; Sigmund, O., Eigenvalue topology optimization via efficient multilevel solution of the frequency response, Internat. J. Numer. Methods Engrg., 115, 872-892 (2018) · Zbl 07865076
[60] Ferrari, F.; Sigmund, O., Towards solving large-scale topology optimization problems with buckling constraints at the cost of linear analyses, Comput. Methods Appl. Mech. Engrg., 363, Article 112911 pp. (2020) · Zbl 1436.74055
[61] Kang, Z.; He, J.; Shi, L.; Miao, Z., A method using successive iteration of analysis and design for large-scale topology optimization considering eigenfrequencies, Comput. Methods Appl. Mech. Engrg., 362, Article 112847 pp. (2020) · Zbl 1439.74280
[62] Zhang, Z.; Chen, W., An approach for maximizing the smallest eigenfrequency of structure vibration based on piecewise constant level set method, J. Comput. Phys., 361, 377-390 (2018) · Zbl 1390.74094
[63] Haber, E.; multilevel, A., Level-set method for optimizing eigenvalues in shape design problems, J. Comput. Phys., 198, 518-534 (2004) · Zbl 1051.65073
[64] Xu, J.; Zhou, A., A two-grid discretization scheme for eigenvalue problems, Math. Comp., 70, 17-25 (2001) · Zbl 0959.65119
[65] Zhang, J.; Zhu, S.; Liu, C.; Shen, X., A two-grid binary level set method for eigenvalue optimization, J. Sci. Comp., 89, 57, 21 (2021) · Zbl 1479.74138
[66] Lin, Q.; Xie, H., A multi-level correction scheme for eigenvalue problems, Math. Comp., 84, 71-88 (2015) · Zbl 1307.65159
[67] Lin, Q., Some problems concerning approximate solutions of operator equations (Chinese with English summary), Acta Math. Sinica, 22, 219-230 (1979) · Zbl 0397.65070
[68] Xu, J., Iterative methods by space decomposition and subspace correction, SIAM Rev., 34, 581-613 (1992) · Zbl 0788.65037
[69] He, Y.; Li, Y.; Xie, H.; You, C.; Zhang, N., A multilevel Newton’s method for eigenvalue problems, Appl. Math., 63, 281-303 (2018) · Zbl 1488.65594
[70] Hu, G.; Xie, H.; Xu, F., A multilevel correction adaptive finite element method for Kohn-Sham equation, J. Comput. Phys., 355, 436-449 (2018) · Zbl 1380.65371
[71] Liang, K.; Lu, X.; Yang, J. Z., Finite element approximation to the extremal eigenvalue problem for inhomogenous materials, Numer. Math., 130, 741-762 (2015) · Zbl 1434.74105
[72] Chanillo, S.; Grieser, D.; Imai, M.; Kurata, K.; Ohnishi, I., Symmetry breaking and other phenomena in the optimization of eigenvalues for composite membranes, Comm. Math. Phys., 214, 315-337 (2000) · Zbl 0972.49030
[73] Xu, F.; Xie, H.; Zhang, N., A parallel augmented subspace method for eigenvalue problems, SIAM J. Sci. Comput., 42, A2655-A2677 (2020) · Zbl 1451.65206
[74] Brenner, S. C.; Scott, L., The Mathematical Theory of Finite Element Methods (1994), Springer-Verlag: Springer-Verlag Berlin · Zbl 0804.65101
[75] Warren, J. A.; Kobayashi, R.; Lobkovsky, A. E.; Craig Carter, W., Extending phase field models of solidification to polycrystalline materials, Acta Mater., 51, 6035-6058 (2003)
[76] (Babuška, I.; Osborn, J. E.; problems, Eigenvalue; Lions, P. G.; Ciarlet, P. G., Handbook of Numerical Analysis, II Finite Element Methods (Part 1) (1991), North-Holland: North-Holland Amsterdam), 641-787 · Zbl 0875.65087
[77] Hughes, T. J.R., The Finite Element Method: Linear Static and Dynamic Finite Element Analysis (1987), Prentice Hall, Inc. Englewood: Prentice Hall, Inc. Englewood Cliffs, NJ · Zbl 0634.73056
[78] Hecht, F., New development in FreeFem++, J. Numer. Math., 20, 3-4, 251-265 (2012) · Zbl 1266.68090
[79] Geuzaine, C.; Remacle, J.-F., Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities, Int. J. Numer. Methods Eng., 79, 1309-1331 (2009) · Zbl 1176.74181
[80] Balay, S., PETSc Users Manual (2022), Argonne National Laboratory
[81] Henson, V. E.; Yang, U. M., BoomerAMG: a parallel algebraic multigrid solver and preconditioner, Appl. Numer. Math., 41, 155-177 (2002) · Zbl 0995.65128
[82] Adams, M. F., Algebraic multigrid methods for direct frequency response analyses in solid mechanics, Comput. Mech., 39, 497-507 (2007) · Zbl 1163.74043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.