×

A multilevel correction adaptive finite element method for Kohn-Sham equation. (English) Zbl 1380.65371

Summary: In this paper, an adaptive finite element method is proposed for solving Kohn-Sham equation with the multilevel correction technique. In the method, the Kohn-Sham equation is solved on a fixed and appropriately coarse mesh with the finite element method in which the finite element space is kept improving by solving the derived boundary value problems on a series of adaptively and successively refined meshes. A main feature of the method is that solving large scale Kohn-Sham system is avoided effectively, and solving the derived boundary value problems can be handled efficiently by classical methods such as the multigrid method. Hence, the significant acceleration can be obtained on solving Kohn-Sham equation with the proposed multilevel correction technique. The performance of the method is examined by a variety of numerical experiments.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65Z05 Applications to the sciences
81V45 Atomic physics

Software:

KSSOLV
Full Text: DOI

References:

[1] Adams, R. A., Sobolev Spaces (1975), Academic Press: Academic Press New York · Zbl 0314.46030
[2] Andrade, X.; Strubbe, D. A.; De Giovannini, U.; Larsen, A. H.; Oliveira, M. J.T.; Alberdi-Rodriguez, J.; Varas, A.; Theophilou, I.; Helbig, N.; Verstraete, M.; Stella, L.; Nogueira, F.; Aspuru-Guzik, A.; Castro, A.; Marques, M. A.L.; Rubio, A., Real-space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems, Phys. Chem. Chem. Phys., 17, 31371-31396 (2015)
[3] Bao, G.; Hu, G.; Liu, D., Numerical solution of the Kohn-Sham equation by finite element methods with an adaptive mesh redistribution technique, J. Sci. Comput., 55, 2, 372-391 (2013) · Zbl 1272.82003
[4] Bao, G.; Hu, G.; Liu, D., An h-adaptive finite element solver for the calculations of the electronic structures, J. Comput. Phys., 231, 14, 4967-4979 (2012) · Zbl 1245.65125
[5] Cancès, E.; Chakir, R.; Maday, Y., Numerical analysis of nonlinear eigenvalue problems, J. Sci. Comput., 45, 1-3, 90-117 (2010) · Zbl 1203.65237
[6] Cancès, E.; Chakir, R.; Maday, Y., Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models, ESAIM: Math. Model. Numer. Anal., 46, 341-388 (2012) · Zbl 1278.82003
[7] Cascon, J.; Kreuzer, C.; Nochetto, R.; Siebert, K., Quasi-optimal convergence rate for an adaptive finite element method, SIAM J. Numer. Anal., 46, 5, 2524-2550 (2008) · Zbl 1176.65122
[8] Chen, H.; Dai, X.; Gong, X.; He, L.; Yang, Z.; Zhou, A., Adaptive finite element approximations for Kohn-Sham models, Multiscale Model. Simul., 12, 4, 1828-1869 (2014) · Zbl 1316.35260
[9] Chen, H.; He, L.; Zhou, A., Finite element approximations of nonlinear eigenvalue problems in quantum physics, Comput. Methods Appl. Mech. Eng., 200, 21, 1846-1865 (2011) · Zbl 1228.81026
[10] Chen, H.; Gong, X.; He, L.; Yang, Z.; Zhou, A., Numerical analysis of finite dimensional approximations of Kohn-Sham models, Adv. Comput. Math., 38, 225-256 (2013) · Zbl 1278.35225
[11] Chen, H.; Xie, H.; Xu, F., A full multigrid method for eigenvalue problems, J. Comput. Phys., 322, 747-759 (2016) · Zbl 1352.65459
[12] Dörfler, W., A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal., 33, 3, 1106-1124 (1996) · Zbl 0854.65090
[13] Genovese, L.; Videau, B.; Caliste, D.; Méhaut, J. F.; Goedecker, S.; Deutsch, T., Wavelet-based density functional theory on massively parallel hybrid architectures, (Electronic Structure Calculations on Graphics Processing Units (2016)), 115-134
[14] Jia, S.; Xie, H.; Xie, M.; Xu, F., A full multigrid method for nonlinear eigenvalue problems, Sci. China Math., 59, 2037-2048 (2016) · Zbl 1354.65236
[15] Kohn, W.; Sham, L., Self-consistent equations including exchange and correlation effects, Phys. Rev. A, 140, 1133-1138 (1965)
[16] Lin, L.; Lu, J.; Ying, L.; E, W., Adaptive local basis set for Kohn-Sham density functional theory in a discontinuous Galerkin framework I: total energy calculation, J. Comput. Phys., 231, 2140-2154 (2012) · Zbl 1251.82008
[17] Lin, Q.; Xie, H., A multi-level correction scheme for eigenvalue problems, Math. Comput., 84, 291, 71-88 (2015) · Zbl 1307.65159
[18] Lin, Q.; Xie, H.; Xu, J., Lower bounds of the discretization for piecewise polynomials, Math. Comput., 83, 1-13 (2014) · Zbl 1280.65118
[19] Mekchay, K.; Nochetto, R., Convergence of adaptive finite element methods for general second order linear elliptic PDEs, SIAM J. Numer. Anal., 43, 1803-1827 (2005) · Zbl 1104.65103
[20] Morin, P.; Nochetto, R.; Siebert, K., Convergence of adaptive finite element methods, SIAM Rev., 44, 4, 631-658 (2002) · Zbl 1016.65074
[21] Motamarri, P.; Nowak, M.; Leiter, K.; Knap, J.; Gavini, V., Higher-order adaptive finite-element methods for Kohn-Sham density functional theory, J. Comput. Phys., 253, 308-343 (2013) · Zbl 1349.74331
[22] Nishioka, H.; Hansen, K.; Mottelson, B. R., Supershells in metal clusters, Phys. Rev. B, 42, 15, 9378-9386 (1990)
[23] Pask, J. E.; Sterne, P. A., Finite element methods in ab initio electronic structure calculations, Model. Simul. Mater. Sci. Eng., 13, R71 (2005)
[24] Pulay, P., Convergence acceleration of iterative sequences. The case of scf iteration, Chem. Phys. Lett., 73, 393-398 (1980)
[25] Pulay, P., Improved SCF convergence acceleration, J. Comput. Chem., 3, 556-560 (1982)
[26] Reed, M.; Simon, B., Methods of Modern Mathematical Physics (1975), Academic Press: Academic Press New York · Zbl 0308.47002
[27] Xie, H., A multilevel correction type of adaptive finite element method for eigenvalue problems (2012)
[28] Xie, H., A multigrid method for eigenvalue problem, J. Comput. Phys., 274, 550-561 (2014) · Zbl 1352.65631
[29] Xie, H., A multigrid method for nonlinear eigenvalue problems, Sci. China Math., 45, 8, 1193-1204 (2015) · Zbl 1488.65596
[30] Xie, H.; Xie, M., A multigrid method for ground state solution of Bose-Einstein condensates, Commun. Comput. Phys., 19, 648-662 (2016) · Zbl 1373.82042
[31] Yang, C.; Meza, J. C.; Lee, B.; Wang, L., KSSOLV - A MATLAB toolbox for solving the Kohn-Sham equations, ACM Trans. Math. Softw., 36, 2 (2009) · Zbl 1364.65112
[32] Zhou, A., An analysis of finite-dimensional approximations for the ground state solution of Bose-Einstein condensates, Nonlinearity, 17, 2, 541-550 (2004) · Zbl 1051.35094
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.