×

Three-phase model of particulate composites in second gradient elasticity. (English) Zbl 1477.74022

Summary: Generalized self-consistent method for particulate composites is realized in the framework of Mindlin’s second gradient elasticity theory (SGET). Effective properties of the macroscopically isotropic medium containing spherical inclusions are determined based on the three-phase sphere model, in which the spherical inclusion surrounded by matrix shell is embedded in the effective medium. Analytical solutions for the hydrostatic pressure and pure shear problems for the considered model are found based on the generalized Papkovich-Neuber potentials in the spherical coordinate system. Eshelby integral formula generalized for SGET is used as a closing energetic equation to estimate the effective properties of the composite material. Positive size effects for the effective elastic moduli of composites with small size inclusions are predicted based on obtained analytical solutions. Strain concentration in the matrix phase is investigated and found to be a non-monotonic function of the inclusion size. Obtained results are verified by the finite element simulations realized for the special case of SGET with simplified constitutive equations.

MSC:

74E30 Composite and mixture properties
74Q15 Effective constitutive equations in solid mechanics
74B99 Elastic materials
Full Text: DOI

References:

[1] Aboudi, J., Mechanics of Composite Materials: a Unified Micromechanical Approach, vol. 29 (2013), Elsevier · Zbl 0837.73003
[2] Andreaus, U.; Dell’Isola, F.; Giorgio, I.; Placidi, L.; Lekszycki, T.; Rizzi, N. L., Numerical simulations of classical problems in two-dimensional (non) linear second gradient elasticity, Int. J. Eng. Sci., 108, 34-50 (2016) · Zbl 1423.74089
[3] Askes, H.; Aifantis, E. C., Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results, Int. J. Solids Struct., 48, 13, 1962-1990 (2011)
[4] Bacca, M.; Bigoni, D.; Dal Corso, F.; Veber, D., Mindlin second-gradient elastic properties from dilute two-phase cauchy-elastic composites. part i: closed form expression for the effective higher-order constitutive tensor, Int. J. Solids Struct., 50, 24, 4010-4019 (2013)
[5] Beaumont, P. W.; Soutis, C.; Hodzic, A., The Structural Integrity of Carbon Fiber Composites: Fifty Years of Progress and Achievement of the Science, Development, and Applications (2016), Springer
[6] Boutin, C.; Giorgio, I.; Placidi, L., Linear pantographic sheets: asymptotic micro-macro models identification, Math. Mech. Complex Syst., 5, 2, 127-162 (2017) · Zbl 1457.74171
[7] Christensen, R. M., Mechanics of Composite Materials (1979), John Wiley and Sons
[8] Christensen, R. M., A critical evaluation for a class of micro-mechanics models, J. Mech. Phys. Solids, 38, 3, 379-404 (1990)
[9] Christensen, R. M., Mechanics of Composite Materials (2012), Courier Corporation
[10] Christensen, R.; Lo, K., Solutions for effective shear properties in three phase sphere and cylinder models, J. Mech. Phys. Solids, 27, 4, 315-330 (1979) · Zbl 0419.73007
[11] Christensen, R.; Schantz, H.; Shapiro, J., On the range of validity of the mori-tanaka method, J. Mech. Phys. Solids, 40, 1, 69-73 (1992)
[12] Delfani, M.; Bagherpour, V., Overall properties of particulate composites with periodic microstructure in second strain gradient theory of elasticity, Mech. Mater., 113, 89-101 (2017)
[13] Dell’Isola, F.; Sciarra, G.; Vidoli, S., Generalized hooke’s law for isotropic second gradient materials, Proc. R. Soc. A Math. Phys. Eng. Sci., 465, 2107, 2177-2196 (2009) · Zbl 1186.74019
[14] Dell’Isola, F.; Andreaus, U.; Placidi, L., At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of gabrio piola, Math. Mech. Solids, 20, 8, 887-928 (2015) · Zbl 1330.74006
[15] Dell’Isola, F.; Madeo, A.; Seppecher, P., Cauchy tetrahedron argument applied to higher contact interactions, Arch. Ration. Mech. Anal., 219, 3, 1305-1341 (2016) · Zbl 1395.74071
[16] Dell’Isola, F.; Cuomo, M.; Greco, L.; Della Corte, A., Bias extension test for pantographic sheets: numerical simulations based on second gradient shear energies, J. Eng. Math., 103, 1, 127-157 (2017) · Zbl 1390.74028
[17] Dell’Isola, F.; Seppecher, P.; Alibert, J. J.; Lekszycki, T.; Grygoruk, R.; Pawlikowski, M.; Steigmann, D.; Giorgio, I.; Andreaus, U.; Turco, E., Pantographic metamaterials: an example of mathematically driven design and of its technological challenges, Continuum Mech. Therm., 1-34 (2018)
[18] Duan, H.; Wang, J.-x.; Huang, Z.; Karihaloo, B. L., Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress, J. Mech. Phys. Solids, 53, 7, 1574-1596 (2005) · Zbl 1120.74718
[19] Enakoutsa, K., Analytical applications and effective properties of a second gradient isotropic elastic material model, Zeitschrift fur Angewandte Mathematik und Physik, 66, 3, 1277-1293 (2014) · Zbl 1317.74018
[20] Eremeyev, V. A.; Dell’Isola, F.; Boutin, C.; Steigmann, D., Linear pantographic sheets: existence and uniqueness of weak solutions, J. Elast., 132, 2, 175-196 (2018) · Zbl 1398.74011
[21] Eremeyev, V. A.; Rosi, G.; Naili, S., Comparison of Anti-plane Surface Waves in Strain-Gradient Materials and Materials with Surface Stresses, Mathematics and Mechanics of Solids (2018), 1081286518769960
[22] Eringen, A., Mechanics of Continua (1967), John Wiley & Sons · Zbl 0222.73001
[23] Eshelby, J., The continuum theory of lattice defects, (Solid State Physics, vol. 3 (1956), Elsevier), 79-144
[24] Forest, S., Mechanics of generalized continua: construction by homogenization, J. Phys. IV, 8, PR4 (1998), Pr4-39
[25] Ganghoffer, J.-F.; Maurice, G.; Rahali, Y., Determination of closed form expressions of the second-gradient elastic moduli of multi-layer composites using the periodic unfolding method, Math. Mech. Solids, 24, 5, 1475-1502 (2019) · Zbl 1445.74048
[26] Gao, X.-L.; Ma, H. M., Strain gradient solution for Eshelby’s ellipsoidal inclusion problem, Proc. R. Soc. A Math. Phys. Eng. Sci., 466, 2120, 2425-2446 (2010) · Zbl 1194.35455
[27] Gao, X. L.; Park, S. K., Variational formulation of a simplified strain gradient elasticity theory and its application to a pressurized thick-walled cylinder problem, Int. J. Solids Struct., 44, 22-23, 7486-7499 (2007) · Zbl 1166.74318
[28] Gusev, A. A.; Lurie, S. A., Strain-gradient elasticity for bridging continuum and atomistic estimates of stiffness of binary Lennard-Jones crystals, Adv. Eng. Mater., 12, 6, 529-533 (2010)
[29] Gusev, A. A.; Lurie, S. A., Symmetry conditions in strain gradient elasticity, Math. Mech. Solids, 22, 4, 683-691 (2017) · Zbl 1371.74049
[30] Hadjesfandiari, A. R.; Dargush, G. F., Fundamental solutions for isotropic size-dependent couple stress elasticity, Int. J. Solids Struct., 50, 9, 1253-1265 (2013)
[31] Herráez, M.; González, C.; Lopes, C.; de Villoria, R. G.; LLorca, J.; Varela, T.; Sánchez, J., Computational micromechanics evaluation of the effect of fibre shape on the transverse strength of unidirectional composites: an approach to virtual materials design, Compos. Appl. Sci. Manuf., 91, 484-492 (2016)
[32] Hill, R., A self-consistent mechanics of composite materials, J. Mech. Phys. Solids, 13, 4, 213-222 (1965)
[33] Kachanov, M.; Sevostianov, I., Micromechanics of Materials, with Applications, vol. 249 (2018), Springer
[34] Kerner, E., The elastic and thermo-elastic properties of composite media, Proc. Phys. Soc. Sect. B, 69, 8, 808 (1956)
[35] Kolo, I.; Askes, H.; de Borst, R., Convergence analysis of Laplacian-based gradient elasticity in an isogeometric framework, Finite Elem. Anal. Des., 135, May, 56-67 (2017)
[36] Kundalwal, S. I., Review on micromechanics of nano-and micro-fiber reinforced composites, Polym. Compos., 39, 12, 4243-4274 (2018)
[37] Kundalwal, S.; Ray, M., Effective properties of a novel continuous fuzzy-fiber reinforced composite using the method of cells and the finite element method, Eur. J. Mech. A Solid., 36, 191-203 (2012)
[38] Kundalwal, S.; Ray, M., Effect of carbon nanotube waviness on the elastic properties of the fuzzy fiber reinforced composites, J. Appl. Mech., 80, 2, Article 021010 pp. (2013)
[39] Lazar, M.; Po, G., Singularity-free dislocation continuum theory for anisotropic crystals, PAMM, 18, 1, Article e201800095 pp. (2018)
[40] Liu, D.; He, Y.; Zhang, B.; Shen, L., Formulation of Toupin-Mindlin strain gradient theory in prolate and oblate spheroidal coordinates, Eur. J. Mech. A Solid., 49, 227-241 (2015) · Zbl 1406.74108
[41] Lurie, S.; Belov, P., Cohesion field: Barenblatt’s hypothesis as formal corollary of theory of continuous media with conserved dislocations, Int. J. Fract., 150, 1-2, 181-194 (2008) · Zbl 1143.74012
[42] Lurie, A.; Belyaev, A., Theory of Elasticity (2005), Springer-Verlag
[43] Lurie, S.; Solyaev, Y., On the formulation of elastic and electroelastic gradient beam theories, Continuum Mech. Therm., 1-13 (2019) · Zbl 1423.74500
[44] Lurie, S.; Belov, P.; Volkov-Bogorodsky, D.; Tuchkova, N., Nanomechanical modeling of the nanostructures and dispersed composites, Comput. Mater. Sci., 28, 3-4, 529-539 (2003)
[45] Lurie, S.; Belov, P.; Volkov-Bogorodsky, D.; Tuchkova, N., Interphase layer theory and application in the mechanics of composite materials, J. Mater. Sci., 41, 20, 6693-6707 (2006)
[46] Lurie, S.; Volkov-Bogorodsky, D.; Leontiev, A.; Aifantis, E., Eshelby’s inclusion problem in the gradient theory of elasticity: applications to composite materials, Int. J. Eng. Sci., 49, 12, 1517-1525 (2011) · Zbl 1423.74049
[47] Lurie, S.; Volkov-Bogorodskii, D.; Tuchkova, N., Exact solution of eshelby-christensen problem in gradient elasticity for composites with spherical inclusions, Acta Mech., 227, 1, 127-138 (2016) · Zbl 1382.74057
[48] Lurie, S.; Volkov-Bogorodskiy, D.; Solyaev, Y.; Rizahanov, R.; Agureev, L., Multiscale modelling of aluminium-based metal-matrix composites with oxide nanoinclusions, Comput. Mater. Sci., 116, 62-73 (2016)
[49] Lurie, S.; Solyaev, Y.; Shramko, K., Comparison between the mori-tanaka and generalized self-consistent methods in the framework of anti-plane strain inclusion problem in strain gradient elasticity, Mech. Mater., 122, 133-144 (2018)
[50] Ma, H. M.; Gao, X. L., A new homogenization method based on a simplified strain gradient elasticity theory, Acta Mech., 225, 4-5, 1075-1091 (2014) · Zbl 1401.74236
[51] Ma, H.; Hu, G.; Wei, Y.; Liang, L., Inclusion problem in second gradient elasticity, Int. J. Eng. Sci., 132, 60-78 (2018) · Zbl 1423.74100
[52] Ma, S.; Scheider, I.; Bargmann, S., Ultrastrong nanocomposites with interphases: nonlocal deformation and damage behavior, Eur. J. Mech. A Solid., 75, 93-108 (2019) · Zbl 1472.74050
[53] Maranganti, R.; Sharma, P., A novel atomistic approach to determine strain-gradient elasticity constants: tabulation and comparison for various metals, semiconductors, silica, polymers and the (ir) relevance for nanotechnologies, J. Mech. Phys. Solids, 55, 9, 1823-1852 (2007) · Zbl 1173.74003
[54] Mindlin, R. D., Micro-structure in linear elasticity, Arch. Ration. Mech. Anal., 16, 1, 51-78 (1964) · Zbl 0119.40302
[55] Mindlin, R. D.; Eshel, N., On first strain-gradient theories in linear elasticity, Int. J. Solids Struct., 4, 1, 109-124 (1968) · Zbl 0166.20601
[56] Morse, P. M.; Feshbach, H., Methods of Theoretical Physics, vol. 2 (1953), McGraw-Hill: McGraw-Hill New York · Zbl 0051.40603
[57] Mousavi, S. M.; Aifantis, E. C., Dislocation-based gradient elastic fracture mechanics for in-plane analysis of cracks, Int. J. Fract., 202, 1, 93-110 (2016)
[58] Ojaghnezhad, F.; Shodja, H. M., A combined first principles and analytical determination of the modulus of cohesion, surface energy, and the additional constants in the second strain gradient elasticity, Int. J. Solids Struct., 50, 24, 3967-3974 (2013)
[59] Phunpeng, V.; Baiz, P. M., Mixed finite element formulations for strain-gradient elasticity problems using the FEniCS environment, Finite Elem. Anal. Des., 96, C, 23-40 (2015)
[60] Polizzotto, C., A unifying variational framework for stress gradient and strain gradient elasticity theories, Eur. J. Mech. A Solid., 49, 430-440 (2015) · Zbl 1406.74091
[61] Polizzotto, C., A hierarchy of simplified constitutive models within isotropic strain gradient elasticity, Eur. J. Mech. A Solid., 61, October, 92-109 (2017) · Zbl 1406.74090
[62] Polyzos, D.; Fotiadis, D., Derivation of mindlin’s first and second strain gradient elastic theory via simple lattice and continuum models, Int. J. Solids Struct., 49, 3-4, 470-480 (2012)
[63] Polyzos, D.; Tsepoura, K.; Tsinopoulos, S.; Beskos, D., A boundary element method for solving 2-d and 3-d static gradient elastic problems: Part i: integral formulation, Comput. Methods Appl. Mech. Eng., 192, 26-27, 2845-2873 (2003) · Zbl 1054.74740
[64] Raju, B.; Hiremath, S.; Mahapatra, D. R., A Review of Micromechanics Based Models for Effective Elastic Properties of Reinforced Polymer Matrix Composites (2018), Composite Structures
[65] Ray, M.; Kundalwal, S., A thermomechanical shear lag analysis of short fuzzy fiber reinforced composite containing wavy carbon nanotubes, Eur. J. Mech. A Solid., 44, 41-60 (2014) · Zbl 1406.74043
[66] Reiher, J. C.; Giorgio, I.; Bertram, A., Finite-element analysis of polyhedra under point and line forces in second-strain gradient elasticity, J. Eng. Mech., 143, 2, Article 04016112 pp. (2016)
[67] Reiher, J. C.; Giorgio, I.; Bertram, A., Finite-element analysis of polyhedra under point and line forces in second-strain gradient elasticity, J. Eng. Mech., 143, 2, Article 04016112 pp. (2017)
[68] Sevostianov, I.; Kachanov, M., Effect of interphase layers on the overall elastic and conductive properties of matrix composites. applications to nanosize inclusion, Int. J. Solids Struct., 44, 3-4, 1304-1315 (2007) · Zbl 1124.74041
[69] Solyaev, Y.; Lurie, S., Numerical predictions for the effective size-dependent properties of piezoelectric composites with spherical inclusions, Compos. Struct., 202, 1099-1108 (2018)
[70] Solyaev, Y.; Lurie, S., Eshelby integral formulas in second gradient elasticity, Nanosci. Technol.: Int. J. (2019), (submitted for publication)
[71] Stengel, M., Unified ab initio formulation of flexoelectricity and strain-gradient elasticity, Phys. Rev. B, 93, 24, 245107 (2016)
[72] Vasil’ev, V.; Lurie, S., New solution of axisymmetric contact problem of elasticity, Mech. Solids, 52, 5, 479-487 (2017)
[73] Volkov-Bogorodskii, D. B.; Lurie, S. A., Eshelby integral formulas in gradient elasticity, Mech. Solids, 45, 4, 648-656 (2010)
[74] Yang, S.; Shen, S., Anti-plane circular nano-inclusion problem with electric field gradient and strain gradient effects, CMC: Comput. Mater. Continua, 40, 3, 219-239 (2014)
[75] Yang, J.; Zhou, H.; Li, J., Electric field gradient effects in an anti-plane circular inclusion in polarized ceramics, Proc. R. Soc. A Math. Phys. Eng. Sci., 462, 2076, 3511-3522 (2006) · Zbl 1149.74335
[76] Yue, Y.; Xu, K.; Aifantis, E., Microscale size effects on the electromechanical coupling in piezoelectric material for anti-plane problem, Smart Mater. Struct., 23, 12, 125043 (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.