×

A boundary element method for solving 2-D and 3-D static gradient elastic problems. I: Integral formulation. (English) Zbl 1054.74740

Summary: A boundary element formulation is developed for the static analysis of two- and three-dimensional solids and structures characterized by a linear elastic material behavior taking into account microstructural effects. The simple gradient elastic theory of Aifantis expressed in the framework of Mindlin’s general theory is used to model this material behaviour. A variational statement is established to determine all possible classical and non-classical (due to gradient terms) boundary conditions of the general boundary value problem. The gradient elastic fundamental solution for both two- and three-dimensional cases is explicitly derived and used to construct the boundary integral representation of the solution with the aid of the reciprocal integral identity especially established for the gradient elasticity considered here. It is found that for a well-posed boundary value problem, in addition to a boundary integral representation for the displacement, a second boundary integral representation for its normal derivative is also necessary. Explicit expressions for interior displacements and stresses in integral form are also presented. All the kernels in the integral equations are explicitly provided.

MSC:

74S15 Boundary element methods applied to problems in solid mechanics
74B05 Classical linear elasticity

Citations:

Zbl 1054.74742
Full Text: DOI

References:

[1] Mindlin, R. D., Microstructure in linear elasticity, Arch. Rat. Mech. Anal., 10, 51-78 (1964) · Zbl 0119.40302
[2] Mindlin, R. D., Second gradient of strain and surface tension in linear elasticity, Int. J. Solids Struct., 1, 417-438 (1965)
[3] Mindlin, R. D.; Eshel, N. N., On first strain-gradient theories in linear elasticity, Int. J. Solids Struct., 4, 109-124 (1968) · Zbl 0166.20601
[4] Aifantis, E. C., On the role of gradients in the localization of deformation and fracture, Int. J. Engrg. Sci., 30, 1279-1299 (1992) · Zbl 0769.73058
[5] Altan, S.; Aifantis, E. C., On the structure of the mode III crack-tip in gradient elasticity, Scripta Metall. Mater., 26, 319-324 (1992)
[6] Ru, C. Q.; Aifantis, E. C., A simple approach to solve boundary value problems in gradient elasticity, Acta Mech., 101, 59-68 (1993) · Zbl 0783.73015
[7] Aifantis, E. C., Update on a class of gradient theories, Mech. Matls., 35, 259-280 (2003)
[8] Vardoulakis, I.; Sulem, J., Bifurcation Analysis in Geomechanics (1995), Blackie/Chapman and Hall: Blackie/Chapman and Hall London · Zbl 0900.73645
[9] Exadaktylos, G. E.; Vardoulakis, I., Microstructure in linear elasticity and scale effects: a reconsideration of basic rock mechanics and rock fracture mechanics, Tectonophysics, 335, 81-109 (2001)
[10] Eringen, A. C.; Suhubi, E. S., Nonlinear theory of simple micro-elastic solids I, Int. J. Engrg. Sci., 2, 189-203 (1964) · Zbl 0138.21202
[11] Eringen, A. C., Theory of micropolar elasticity, (Liebowitz, H., Fracture, vol. II (1968), Academic Press: Academic Press New York), pp. 621-729 · Zbl 0145.21302
[12] E. et F. Cosserat, Theorie des Corps Deformables, A. Hermann et Cie, Paris, 1909; E. et F. Cosserat, Theorie des Corps Deformables, A. Hermann et Cie, Paris, 1909 · JFM 40.0862.02
[13] Mindlin, R. D.; Tiersten, H. F., Effects of couple-stresses in linear elasticity, Arch. Rat. Mech. Anal., 11, 415-448 (1962) · Zbl 0112.38906
[14] Koiter, W. T., Couple stresses in the theory of elasticity, I & II,, Proc. K. Ned. Akad. Wet., B 67, 17-44 (1964) · Zbl 0124.17405
[15] Toupin, R. A., Theories of elasticity with couple-stresses, Arch. Rat. Mech. Anal., 17, 85-112 (1965) · Zbl 0131.22001
[16] Exadaktylos, G.; Vardoulakis, I.; Aifantis, E. C., Cracks in gradient elastic bodies with surface energy, Int. J. Fract., 79, 107-119 (1996)
[17] Gutkin, M. Y.; Aifantis, E. C., Dislocations in the theory of gradient elasticity, Scripta Mater., 40, 559-566 (1999)
[18] Gutkin, M. Y., Nanoscopics of dislocations and disclinations in gradient elasticity, Rev. Adv. Mater. Sci., 1, 27-60 (2000)
[19] Exadaktylos, G. E.; Vardoulakis, I., Surface instability in gradient elasticity with surface energy, Int. J. Solids Struct., 35, 2251-2281 (1998) · Zbl 0935.74017
[20] Tsepoura, K. G.; Papargyri-Beskou, S.; Polyzos, D.; Beskos, D. E., Static and dynamic analysis of a gradient elastic bar in tension, Arch. Appl. Mech., 72, 483-497 (2002) · Zbl 1053.74028
[21] Papargyri-Beskou, S.; Tsepoura, K. G.; Polyzos, D.; Beskos, D. E., Bending and stability analysis of gradient elastic beams, Int. J. Solids Struct., 40, 385-400 (2003) · Zbl 1022.74010
[22] Altan, B. S.; Evensen, H.; Aifantis, E. C., Longitudinal vibrations of a beam: a gradient elasticity approach, Mech. Res. Comm., 23, 35-40 (1996) · Zbl 0843.73048
[23] Chang, C. S.; Gao, J., Wave propagation in granular rod using high-gradient theory, J. Engrg. Mech., ASCE, 123, 52-59 (1997)
[24] Chang, C. S.; Gao, J.; Zhong, X., High-gradient modeling for Love wave propagation in geological materials, J. Engrg. Mech. ASCE, 124, 1354-1359 (1998)
[25] Georgiadis, H. G.; Vardoulakis, I.; Lykotrafitis, G., Torsional surface waves in a gradient-elastic half-space, Wave Motion, 31, 333-348 (2000) · Zbl 1074.74567
[26] Herrmann, L. R., Mixed finite elements for couple-stress analysis, (Atluri, S. N.; Gallagher, R. H.; Zienkiewicz, O. C., Hybrid and Mixed Finite Element Methods (1983), John Wiley & Sons: John Wiley & Sons Chichester), 1-17
[27] Nakamura, S.; Benedict, R.; Lakes, R., Finite element method for orthotropic micropolar elasticity, Int. J. Engrg. Sci., 22, 319-330 (1984) · Zbl 0536.73007
[28] Huang, F. Y.; Liang, K. Z., Torsional analysis of micropolar elasticity using the finite element method, Int. J. Engrg. Sci., 32, 347-358 (1994) · Zbl 0788.73067
[29] Providas, E.; Kattis, M. A., Finite element method in plane Cosserat elasticity, Comp. & Struct., 80, 2059-2069 (2002)
[30] Teneketzis Tenek, L.; Aifantis, E. C., A two-dimensional finite element implementation of a special form of gradient elasticity, Comp. Model. Engrg. Sci., 3, 731-741 (2002) · Zbl 1143.74376
[31] Shu, J. Y.; King, W. E.; Fleck, N. A., Finite elements for materials with strain gradient effects, Int. J. Num. Meth. Engrg., 44, 373-391 (1999) · Zbl 0943.74072
[32] Amanatidou, E.; Aravas, N., Mixed finite element formulations of strain-gradient elasticity problems, Comp. Meth. Appl. Mech. Engrg., 191, 1723-1751 (2002) · Zbl 1098.74678
[33] Dragos, L., Fundamental solutions in micropolar elasticity, Int. J. Engrg. Sci., 22, 265-275 (1984) · Zbl 0534.73002
[34] Liang, K. Z.; Huang, F. Y., Boundary element method for micropolar elasticity, Int. J. Engrg. Sci., 34, 509-521 (1996) · Zbl 0900.73914
[35] Huang, F. Y.; Liang, K. Z., Boundary element analysis of stress concentration in micropolar elastic plate, Int. J. Num. Meth. Engrg., 40, 1611-1622 (1997)
[36] Sladek, J.; Sladek, V., Application of local boundary integral equation method into micropolar elasticity, Engrg. Anal. Bound. Elem., 27, 81-90 (2003) · Zbl 1021.74047
[37] Tsepoura, K. G.; Papargyri-Beskou, S.; Polyzos, D., A boundary element method for solving 3D static gradient elastic problems with surface energy, Comput. Mech., 29, 361-381 (2002) · Zbl 1146.74368
[38] L. Brand (Ed.), Vector And Tensor Analysis, J. Wiley, New York, 1996; L. Brand (Ed.), Vector And Tensor Analysis, J. Wiley, New York, 1996 · Zbl 0032.30602
[39] Dassios, G.; Lindell, I. V., On the Helmholtz decomposition for polyadics, Quart. Appl. Math. LIX, 4, 787-796 (2001) · Zbl 1165.35341
[40] Brebbia, C. A.; Dominguez, J., Boundary Elements, An Introductory Course (1992), CMP & McGraw Hill: CMP & McGraw Hill Southampton & New York · Zbl 0780.73002
[41] K.G. Tsepoura, A boundary element method for solving static and frequency domain gradient elastic problems, Ph. D. Thesis, Department of Mechanical and Aeronautical Engineering, University of Patras, Greece, 2003; K.G. Tsepoura, A boundary element method for solving static and frequency domain gradient elastic problems, Ph. D. Thesis, Department of Mechanical and Aeronautical Engineering, University of Patras, Greece, 2003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.