×

Cauchy tetrahedron argument applied to higher contact interactions. (English) Zbl 1395.74071

Summary: Second gradient theories are nowadays used in many studies in order to describe in detail some transition layers which may occur in micro-structured materials and in which physical properties are sharply varying. Sometimes higher order theories are also evoked. Up to now these models have not been based on a construction of stresses similar to the one due to Cauchy, which has been applied only for simple materials. It has been widely recognized that the fundamental assumption by Cauchy that the traction depends only on the normal of the dividing surface cannot be maintained for higher gradient theories. However, this observation did not urge any author, to our knowledge, to revisit the Cauchy construction in order to adapt it to a more general conceptual framework. This is what we do in this paper for a continuum of grade \(N\) (also called \(N\)-th gradient continuum). Our construction is very similar to the one due to Cauchy; based on the tetrahedron argument, it does not introduce any argument of a different nature. In particular, we avoid invoking the principle of virtual work. As one should expect, the balance assumption and the regularity hypotheses have to be adapted to the new framework and tensorial computations become more complex.

MSC:

74M15 Contact in solid mechanics

References:

[1] Aifantis E.C.: On the role of gradients in the localization of deformation and fracture. Int. J. Eng. Sci. 30(10), 1279-1299 (1992) · Zbl 0769.73058 · doi:10.1016/0020-7225(92)90141-3
[2] Aifantis E.C.: Strain gradient interpretation of size effects. Int. J. Fract. 95(1-4), 299-314 (1999) · doi:10.1023/A:1018625006804
[3] Alibert J.J., Seppecher P., dell’Isola F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8, 51-73 (2003) · Zbl 1039.74028 · doi:10.1177/1081286503008001658
[4] Altenbach, H., Eremeyev, V.A., Lebedev, L.P.: On the existence of solution in the linear elasticity with surface stresses. ZAMM J. Appl. Math. Mechan./Zeitschrift fr Angewandte Mathematik und Mechanik., 90(3), 231-240 (2010) · Zbl 1355.74014
[5] Auffray, N., dell’Isola, F., Eremeyev, V. A., Madeo, A., Rosi, G. : Analytical continuum mechanics la HamiltonPiola least action principle for second gradient continua and capillary fluids. Math. Mech. Solids. 20(4), 375-417 (2015) · Zbl 1327.76008
[6] Casal, P.: La theorie du second gradient et la capillarite. C. R. Acad. Sci. Paris.274, 1571-1574 (1972) · Zbl 0286.76004
[7] Cauchy, A.L.: De la pression ou tension dans un corps solide. Ex. de Math. 2, 4256 (available in Gallica.bnf.fr) (1827) · Zbl 1268.74007
[8] Céline, C., Boutin, C., Hans, C.: Wave propagation and non-local effects in periodic frame materials: generalized continuum mechanics. Math. Mech. Solids (2013) · Zbl 1330.74088
[9] Chesnais, C., Boutin, C., Hans, S.: Effects of the local resonance on the wave propagation in periodic frame structures: generalized newtonian mechanics. J. Acoust. Soc. Am. 132(4), Pt. 2 (2012) · Zbl 1330.74088
[10] Coleman B.D., Noll W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mechan. Anal. 13(1), 167-178 (1963) · Zbl 0113.17802 · doi:10.1007/BF01262690
[11] dell’Isola, F., Seppecher, P.: The relationship between edge contact forces, double forces and interstitial working allowed by the principle of virtual power. Comptes Rendus de l’Academie de Sciences - Serie IIb: Mécanique, Physique, Chimie, Astronomie, vol. 321, 303-308 (1995) · Zbl 0844.73006
[12] dell’isola F., Seppecher P.: Edge contact forces and quasi-balanced power. Meccanica 32(1), 33-52 (1997) · Zbl 0877.73055 · doi:10.1023/A:1004214032721
[13] dell’Isola, F., Seppecher, P., Madeo, A.: How contact interactions may depend on the shape of Cauchy cuts in N-th gradient continua: approach à la D’Alembert. Zeitschrift für Angewandte Mathematik und Physik (ZAMP), 63(6), 1119-1141 (2012) · Zbl 1330.76016
[14] dell’Isola, F., Seppecher, P.: Hypertractions and hyperstresses convey the same mechanical information Continuum Mech. Thermodyn.2010 22: 163176 by Prof. Podio Guidugli and Prof. Vianello and some related papers on higher gradient theories. Contin. Mech. Thermodyn. 23(5), 473-478 (2011) · Zbl 1272.74005
[15] dell’Isola, F., Andreaus, U., Placidi, L.: A still topical contribution of Gabrio Piola to Continuum Mechanics: the creation of peri-dynamics, non-local and higher gradient continuum mechanics. In: The complete works of Gabrio Piola: Volume I, Advanced Structured Materials, vol. 38. Springer, Switzerland (2014) · Zbl 1330.74006
[16] dell’Isola, F., Maier, G., Perego, U., Andreaus, U., Esposito, R., Forest, S.: The complete works of Gabrio Piola: Volume I. Advan. Struct. Mater. 38 (2014) · Zbl 1305.74003
[17] Del Piero G.: Non-classical continua, pseudobalance, and the law of action and reaction. Math. Mech. Complex. Syst. 2(1), 7110 (2014) · Zbl 1400.74007
[18] Dunn, J.E., Serrin, J.: On the thermomechanics of interstitial working. Arch. Rational Mech. Anal. 88(2), 95-133 (1985) · Zbl 0582.73004
[19] Eringen A.C.: Microcontinuum Field Theories. Springer-Verlag, New York (2001) · Zbl 0972.76001
[20] Forest, S., Cordero, N.M., Busso, E.P.: First vs. second gradient of strain theory for capillarity effects in an elastic fluid at small length scales. Comput. Mater. Sci. 50(4), 1299-1304 (2011) · Zbl 1364.46041
[21] Fosdick R.: Observations concerning virtual power. Math. Mech. Solids, 16, 573-585 (2011) · Zbl 1269.74013 · doi:10.1177/1081286510387708
[22] Fried, E., Gurtin, M.E. : Tractions balanced and boundary conditions for non simple materials with application to liquid flow at small length scale, Arch. Rat. Mech. Anal., 182(3), 513-554 (2006) · Zbl 1104.74006
[23] Garajeu M., Gouin H., Saccomandi G.: Scaling Navier-Stokes equation in nanotubes. Phys. Fluids 25(8), 082003 (2013) · doi:10.1063/1.4818159
[24] Germain, P.: La mthode des puissances virtuelles en mcanique des milieux continus. J. Mcanique, 12, 236-274 (1973) · Zbl 0261.73003
[25] Germain, P.: The method of virtual power in continuum mechanics. Part 2: Microstructure. SIAM J. Appl. Math. 25(3), 556-575 (1973) · Zbl 0273.73061
[26] Giusteri G.G.: The multiple nature of concentrated interactions in second-gradient dissipative liquids. Zeitschrift fr angewandte Mathematik und Physik, 64(2), 371-380 (2013) · Zbl 1268.74007 · doi:10.1007/s00033-012-0229-5
[27] Gurtin, M.E.: Thermodynamics and the possibility of spatial interaction in elastic materials. Arch. Ration. Mechan. Anal. 195, 339-352 (1965) · Zbl 0146.21106
[28] Mindlin, R.D.: Influence of couple-stresses on stress concentrations. Exp. Mech. 36, 756757 (1962) · Zbl 1400.74007
[29] Mindlin R.D., Tiersten H.F.: Effects of couple-stresses in linear elasticity. Arch. Rational Mech. Anal. 11, 415-448 (1962) · Zbl 0112.38906 · doi:10.1007/BF00253946
[30] Mindlin, R.D.: Complex representation of displacements and stresses in plane strain with couple- stresses. 1965 Appl. Theory of Functions in Continuum Mechanics (Proc. Internat. Sympos., Tbil- isi), Mechanics of Solids (Russian), vol. I, pp. 256-259 Izdat. Nauka, Moscow (1963)
[31] Mindlin, R.D.: Second gradient of strain and surface tension in linear elasticity. Int. J. Solids Struct. 1(4), 417-438 (1965)
[32] Müller I.: Thermodynamics of mixtures and phase field theory. Int. J. Solids Struct. 38(6), 1105-1113 (2001) · Zbl 1007.74010 · doi:10.1016/S0020-7683(00)00076-7
[33] Neff, P., Chemiki, K., Alber, H.D.: Notes on strain gradient plasticity: finite strain covariant modelling and global existence in the infinitesimal rate-independent case. Math. Models Methods Appl. Sci. 19(02), 307-346 (2009) · Zbl 1160.74009
[34] Noll, W.: The foundations of classical mechanics in the light of recent advances in continuum mechanics, In: The Axiomatic Method, with Special Reference to Geometry and Physics, pp 266-281. North-Holland, Amsterdam (1959) · Zbl 0087.39401
[35] Noll W., Virga E.: On edge interactions and surface tension. Arch. Ration. Mech. Anal. 111, 1-31 (1990) · Zbl 0709.73001 · doi:10.1007/BF00375698
[36] Pideri, C., Seppecher, P.: A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium. Contin. Mech. Thermodyn. 9(5), 241-257 (1997) · Zbl 0893.73006
[37] Piola, G.: Sull’applicazione de’ principj della meccanica analitica del Lagrange ai principali problemi. Memoria di Gabrio Piola presentata al concorso del premio e coronata dall’I.R. Istituto di Scienze, ecc. nella solennita del giorno 4 ottobre 1824, Milano, Imp. Regia stamperia (1825)
[38] Piola, G.: Memoria intorno alle equazioni fondamentali del movimento di corpi qualsivogliono considerati secondo la naturale loro forma e costituzione, Modena, Tipi del R.D. Camera (1846) · Zbl 1364.46041
[39] Polizzotto, C., Borino, G.: A thermodynamics-based formulation of gradient-dependent plasticity. Eur. J. Mech. A/Solids17(5) 741-761 (1998) · Zbl 0937.74013
[40] Schwartz, L.: Theorie des Distributions, Hermann, Paris 1973
[41] Sciarra, G., dell’Isola, F., Coussy, O.: Second gradient poromechanics. Int. J. Solids Struct. 44(20), 6607-6629 (2007) · Zbl 1166.74341
[42] Segev, R., De Botton, G.: On the consistency conditions for force systems. International Journal of Non-Linear Mechanics, Elsevier, 26(1), 47-59 (1991) · Zbl 0808.73008
[43] Seppecher, P.: Moving contact lines in the Cahn-Hilliard theory. Int. J. Eng. Sci. 34(9), 977-992 (1996) · Zbl 0899.76042
[44] Seppecher, P., Alibert, J.J., dell’Isola, F.: Linear elastic trusses leading to continua with exotic mechanical. J. Phys. Conf. Ser. 319(1), 012018 (2011)
[45] Thomas E.G.F.: A polarization identity for multilinear maps. Indag. Math. 25(3), 468-474 (2014) · Zbl 1364.46041 · doi:10.1016/j.indag.2013.11.003
[46] Toupin, R.A.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11, 385-414 (1962) · Zbl 0112.16805
[47] Toupin R.A.: Theories of elasticity with couple-stress. Arch. Ration. Mech. Anal., 17, 85-112 (1964) · Zbl 0131.22001 · doi:10.1007/BF00253050
[48] Triantafyllidis, N., Aifantis, E.C.: A gradient approach to localization of deformation. I. Hyperelastic materials. J Elast. 16(3), 225-237 (1986) · Zbl 0594.73044
[49] Truesdell, C., Noll, W.: The Non-linear Field Theories of Mechanics, in Fliigge’s Encyclopedia of Physics, vol. III/3. Springer-Verlag, Berlin, pp. 1-662 (1965) · Zbl 0709.73001
[50] Truesdell, C.: Cauchy and the modern mechanics of continua. Revue d’histoire des sciences, t45(1), 5-24 (1992) · Zbl 0757.01014
[51] Yang Y., Misra A.: Micromechanics based second gradient continuum theory for shear band modeling in cohesive granular materials following damage elasticity. Int. J. Solids Struct. 49(18), 2500-2514 (2012) · doi:10.1016/j.ijsolstr.2012.05.024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.