×

Varieties of contextuality based on probability and structural nonembeddability. (English) Zbl 1543.81019

Summary: Different analytic notions of contextuality fall into two major groups: probabilistic and strong notions of contextuality. S. Kochen and E. P. Specker’s Theorem 0 [J. Math. Mech. 17, 59–87 (1967; Zbl 0156.23302)] presents a demarcation criterion for differentiating between those groups. Whereas probabilistic contextuality still allows classical models, albeit with nonclassical probabilities, the logico-algebraic “strong” form of contextuality characterizes collections of quantum observables that have no faithfully embedding into (extended) Boolean algebras. Both forms indicate a classical in- or under-determination that can be termed “value indefinite” and formalized by partial functions of theoretical computer sciences.

MSC:

81P13 Contextuality in quantum theory
35R60 PDEs with randomness, stochastic partial differential equations
81P40 Quantum coherence, entanglement, quantum correlations
26A24 Differentiation (real functions of one variable): general theory, generalized derivatives, mean value theorems
05C60 Isomorphism problems in graph theory (reconstruction conjecture, etc.) and homomorphisms (subgraph embedding, etc.)

Citations:

Zbl 0156.23302

References:

[1] Kochen, S.; Specker, E. P., The problem of hidden variables in quantum mechanics, J. Math. Mech., 17, 1, 59-87 (1967) · Zbl 0156.23302
[2] Boole, G., On the theory of probabilities, Philos. Trans. R. Soc. Lond., 152, 225-252 (1862) · Zbl 1319.60004
[3] Schrödinger, E., Die gegenwärtige Situation in der Quantenmechanik, Naturwissenschaften, 23, 823-828 (1935) · JFM 61.0936.01
[4] Bohr, N., Discussion with Einstein on epistemological problems in atomic physics, (Schilpp, P. A., Albert Einstein: Philosopher-Scientist (1949), The Library of Living Philosophers: The Library of Living Philosophers Evanston, Ill.), 200-241 · Zbl 0038.14804
[5] Khrennikov, A., Bohr against Bell: complementarity versus nonlocality, Open Phys., 15, 1, 734-738 (2017)
[6] Jaeger, G., Quantum contextuality in the Copenhagen approach, Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci., 377, 2157, Article 20190025 pp. (2019) · Zbl 1462.81018
[7] Khrennikov, A., Interpretations of Probability (2009), Walter de Gruyter: Walter de Gruyter Berlin, New York · Zbl 1369.81014
[8] Khrennikov, A., Contextual Approach to Quantum Formalism, Fundamental Theories of Physics, vol. 160 (2009), Springer Science + Business Media B.V. · Zbl 1176.81001
[9] London, F.; Bauer, E., La theorie de l’observation en mécanique quantique; No. 775 of Actualités scientifiques et industrielles: Exposés de physique générale, publiés sous la direction de Paul Langevin (1939), Hermann: Hermann Paris, English translation in [10] · JFM 65.1526.06
[10] London, F.; Bauer, E., The theory of observation in quantum mechanics, (Wheeler, J. A.; Zurek, W. H., Quantum Theory and Measurement (1983), Princeton University Press: Princeton University Press Princeton, NJ), 217-259, consolidated translation of French original [9]
[11] Zeilinger, A., A foundational principle for quantum mechanics, Found. Phys., 29, 4, 631-643 (1999)
[12] Bell, J. S., On the problem of hidden variables in quantum mechanics, Rev. Mod. Phys., 38, 447-452 (1966) · Zbl 0152.23605
[13] Hertz, H., Prinzipien der Mechanik (1894), Johann Ambrosius Barth (Arthur Meiner): Johann Ambrosius Barth (Arthur Meiner) Leipzig, mit einem Vorwort von H. von Helmholtz · JFM 67.0970.03
[14] Specker, E., Die Logik nicht gleichzeitig entscheidbarer Aussagen, Dialectica, 14, 2-3, 239-246 (1960), English translation at
[15] Abbott, A. A.; Calude, C. S.; Svozil, K., A variant of the Kochen-Specker theorem localising value indefiniteness, J. Math. Phys., 56, 10, Article 102201 pp. (2015) · Zbl 1333.81017
[16] Budroni, C.; Cabello, A.; Gühne, O.; Kleinmann, M.; Larsson, J.-A., Quantum contextuality (Feb. 2021)
[17] Cabello, A., Experimentally testable state-independent quantum contextuality, Phys. Rev. Lett., 101, 21, Article 210401 pp. (2008)
[18] Cabello, A.; Portillo, J. R.; Solís, A.; Svozil, K., Minimal true-implies-false and true-implies-true sets of propositions in noncontextual hidden-variable theories, Phys. Rev. A, 98, Article 012106 pp. (2018)
[19] Gleason, A. M., Measures on the closed subspaces of a Hilbert space, J. Math. Mech., 6, 4, 885-893 (1957) · Zbl 0078.28803
[20] Zierler, N.; Schlessinger, M., Boolean embeddings of orthomodular sets and quantum logic, Duke Math. J., 32, 251-262 (1965), reprinted in Ref. [78] · Zbl 0171.25403
[21] Kamber, F., Zweiwertige Wahrscheinlichkeitsfunktionen auf orthokomplementären Verbänden, Math. Ann., 158, 3, 158-196 (1965) · Zbl 0152.46205
[22] Halmos, P. R., Finite-Dimensional Vector Spaces, Undergraduate Texts in Mathematics (1958), Springer: Springer New York · Zbl 0107.01404
[23] Svozil, K., Logical equivalence between generalized urn models and finite automata, Int. J. Theor. Phys., 44, 745-754 (2005) · Zbl 1104.81033
[24] Wright, R., Generalized urn models, Found. Phys., 20, 7, 881-903 (1990)
[25] Moore, E. F., Gedanken-experiments on sequential machines, (Shannon, C. E.; McCarthy, J., Automata Studies. (AM-34) (1956), Princeton University Press: Princeton University Press Princeton, NJ), 129-153 · Zbl 0074.38401
[26] Schaller, M.; Svozil, K., Automaton logic, Int. J. Theor. Phys., 35, 911-940 (1996) · Zbl 0854.03041
[27] Svozil, K., Faithful orthogonal representations of graphs from partition logics, Soft Comput., 24, 10239-10245 (2020) · Zbl 1492.81024
[28] Froissart, M., Constructive generalization of Bell’s inequalities, Il Nuovo Cimento B (11, 1971-1996), 64, 2, 241-251 (1981)
[29] Pitowsky, I., The range of quantum probability, J. Math. Phys., 27, 6, 1556-1565 (1986)
[30] Foulis, D. J.; Randall, C. H., Empirical logic and quantum mechanics, (Suppes, P., Logic and Probability in Quantum Mechanics (1976), Springer Netherlands: Springer Netherlands Dordrecht), 73-103 · Zbl 0359.02018
[31] Birkhoff, G.; von Neumann, J., The logic of quantum mechanics, Ann. Math., 37, 4, 823-843 (1936) · JFM 62.1061.04
[32] Suppes, P.; Zanotti, M., When are probabilistic explanations possible?, Synthese, 48, 2, 191-199 (1981) · Zbl 0476.03011
[33] Avis, D.; Imai, H.; Ito, T.; Sasaki, Y., Two-party Bell inequalities derived from combinatorics via triangular elimination, J. Phys. A, Math. Gen., 38, 50, 10971-10987 (2005) · Zbl 1092.81508
[34] Kochen, S.; Specker, E. P., Logical structures arising in quantum theory, (Addison, J. W.; Henkin, L.; Tarski, A., The Theory of Models, Proceedings of the 1963 International Symposium at Berkeley (1965), North Holland: North Holland Amsterdam, New York, Oxford), 177-189, reprinted in Ref. [76, pp. 209-221] · Zbl 0171.25402
[35] Svozil, K., On generalized probabilities: correlation polytopes for automaton logic and generalized urn models, extensions of quantum mechanics and parameter cheats (2001)
[36] Klyachko, A. A.; Can, M. A.; Binicioğlu, S.; Shumovsky, A. S., Simple test for hidden variables in spin-1 systems, Phys. Rev. Lett., 101, Article 020403 pp. (2008) · Zbl 1228.81068
[37] Bub, J.; Stairs, A., Contextuality and nonlocality in ‘no signaling’ theories, Found. Phys., 39, 690-711 (2009) · Zbl 1176.81006
[38] Svozil, K., Quantum violation of the Suppes-Zanotti inequalities and “contextuality”, Int. J. Theor. Phys., 60, 6, 2300-2310 (2021) · Zbl 1528.81030
[39] Clauser, J. F.; Horne, M. A.; Shimony, A.; Holt, R. A., Proposed experiment to test local hidden-variable theories, Phys. Rev. Lett., 23, 15, 880-884 (1969) · Zbl 1371.81014
[40] Peres, A., Unperformed experiments have no results, Am. J. Phys., 46, 745-747 (1978)
[41] Svozil, K., Quantum value indefiniteness, Nat. Comput., 10, 4, 1371-1382 (2011) · Zbl 1251.81030
[42] Svozil, K., How much contextuality?, Nat. Comput., 11, 2, 261-265 (2012) · Zbl 1339.81013
[43] Dzhafarov, E. N.; Kujala, J. V.; Larsson, J.-A.k., Contextuality in three types of quantum-mechanical systems, Found. Phys., 45, 7, 762-782 (2015) · Zbl 1327.81023
[44] Dzhafarov, E. N.; Cervantes, V. H.; Kujala, J. V., Contextuality in canonical systems of random variables, Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci., 375, 2106, Article 20160389 pp. (2017) · Zbl 1404.81024
[45] Kujala, J. V.; Dzhafarov, E. N., Measures of contextuality and non-contextuality, Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci., 377, 2157, Article 20190149 pp. (2019) · Zbl 1462.81019
[46] Dzhafarov, E. N.; Kujala, J. V.; Cervantes, V. H., Contextuality and noncontextuality measures and generalized bell inequalities for cyclic systems, Phys. Rev. A, 101, Article 042119 pp. (2020)
[47] Einstein, A.; Podolsky, B.; Rosen, N., Can quantum-mechanical description of physical reality be considered complete?, Phys. Rev., 47, 10, 777-780 (1935) · Zbl 0012.04201
[48] Garg, A.; Mermin, D. N., Farkas’s lemma and the nature of reality: statistical implications of quantum correlations, Found. Phys., 14, 1, 1-39 (1984)
[49] Ziegler, G. M., Lectures on Polytopes, Graduate Texts in Mathematics, vol. 152 (1994), Springer: Springer New York
[50] Schrijver, A., Theory of Linear and Integer Programming, Wiley Series in Discrete Mathematics & Optimization (1998), John Wiley & Sons: John Wiley & Sons New York, Toronto, London · Zbl 0970.90052
[51] Fukuda, K., Frequently asked questions in polyhedral computation (2014)
[52] Brody, T. A., The Suppes-Zanotti theorem and the Bell inequalities, Rev. Mex. Fis., 35, 2, 170-187 (1989) · Zbl 1291.81013
[53] Khrennikov, A., Can there be given any meaning to contextuality without incompatibility?, Int. J. Theor. Phys. (Dec. 2020)
[54] Filipp, S.; Svozil, K., Generalizing Tsirelson’s bound on Bell inequalities using a min-max principle, Phys. Rev. Lett., 93, Article 130407 pp. (2004)
[55] Svozil, K., Extensions of Hardy-type true-implies-false gadgets to classically obtain indistinguishability, Phys. Rev. A, 103, Article 022204 pp. (2021)
[56] Ramanathan, R.; Rosicka, M.; Horodecki, K.; Pironio, S.; Horodecki, M.; Horodecki, P., Gadget structures in proofs of the Kochen-Specker theorem (Aug. 2020)
[57] Svozil, K., New forms of quantum value indefiniteness suggest that incompatible views on contexts are epistemic, Entropy, 20, 6, Article 406 pp. (2018)
[58] Lovász, L., On the Shannon capacity of a graph, IEEE Trans. Inf. Theory, 25, 1, 1-7 (1979) · Zbl 0395.94021
[59] Belinfante, F. J., A Survey of Hidden-Variables Theories, International Series of Monographs in Natural Philosophy, vol. 55 (1973), Pergamon Press, Elsevier: Pergamon Press, Elsevier Oxford, New York
[60] Redhead, M., Incompleteness, Nonlocality, and Realism: A Prolegomenon to the Philosophy of Quantum Mechanics (1987), Clarendon Press: Clarendon Press Oxford · Zbl 0611.03003
[61] Cabello, A., A simple proof of the Kochen-Specker theorem, Eur. J. Phys., 15, 4, 179-183 (1994)
[62] Cabello, A., Converting contextuality into nonlocality, Phys. Rev. Lett., 127, Article 070401 pp. (2021)
[63] Tkadlec, J., Greechie diagrams of small quantum logics with small state spaces, Int. J. Theor. Phys., 37, 1, 203-209 (1998) · Zbl 0906.03064
[64] Svozil, K., Roots and (re)sources of value (in)definiteness versus contextuality, (Hemmo, M.; Shenker, O., Quantum, Probability, Logic: The Work and Influence of Itamar Pitowsky. Quantum, Probability, Logic: The Work and Influence of Itamar Pitowsky, Jerusalem Studies in Philosophy and History of Science (JSPS), vol. 1 (2020), Springer International Publishing: Springer International Publishing Cham), 521-544 · Zbl 1498.81041
[65] Pitowsky, I., Infinite and finite Gleason’s theorems and the logic of indeterminacy, J. Math. Phys., 39, 1, 218-228 (1998) · Zbl 0921.03057
[66] Hrushovski, E.; Pitowsky, I., Generalizations of Kochen and Specker’s theorem and the effectiveness of Gleason’s theorem, Stud. Hist. Philos. Sci. Part B, Stud. Hist. Philos. Mod. Phys., 35, 2, 177-194 (2004) · Zbl 1222.81068
[67] Abbott, A. A.; Calude, C. S.; Conder, J.; Svozil, K., Strong Kochen-Specker theorem and incomputability of quantum randomness, Phys. Rev. A, 86, Article 062109 pp. (2012)
[68] Abbott, A. A.; Calude, C. S.; Svozil, K., Value-indefinite observables are almost everywhere, Phys. Rev. A, 89, Article 032109 pp. (2014)
[69] Jaynes, E. T., Probability Theory: The Logic of Science (2012), Cambridge University Press: Cambridge University Press Cambridge, edited by G. Larry Bretthorst · Zbl 1045.62001
[70] Kleene, S. C., General recursive functions of natural numbers, Math. Ann., 112, 1, 727-742 (1936) · Zbl 0014.19402
[71] Abbott, A. A.; Calude, C. S.; Svozil, K., A quantum random number generator certified by value indefiniteness, Math. Struct. Comput. Sci., 24 (2014) · Zbl 1342.65005
[72] Svozil, K., “Haunted” quantum contextuality (1999) · Zbl 1353.81009
[73] Svozil, K., Proposed direct test of a certain type of noncontextuality in quantum mechanics, Phys. Rev. A, 80, 4, Article 040102 pp. (2009)
[74] Griffiths, R. B., What quantum measurements measure, Phys. Rev. A, 96, 3 (Sep. 2017)
[75] Griffiths, R. B., Quantum measurements and contextuality, Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci., 377, 2157, Article 20190033 pp. (2019) · Zbl 1462.81021
[76] Specker, E., Selecta (1990), Birkhäuser Verlag: Birkhäuser Verlag Basel · Zbl 0699.01038
[77] Stigler, S. M.; Gieryn, Thomas F., Stigler’s law of eponymy, Science and Social Structure: a Festschrift for Robert K. Merton. Science and Social Structure: a Festschrift for Robert K. Merton, Trans. N. Y. Acad. Sci., 39, 1 Series II, 147-157 (1980), reprinted in [79]
[78] Zierler, N.; Schlessinger, M., Boolean embeddings of orthomodular sets and quantum logic, (Hooker, C. A., The Logico-Algebraic Approach to Quantum Mechanics: Volume I: Historical Evolution (1975), Springer Netherlands: Springer Netherlands Dordrecht), 247-262
[79] Stigler, S. M., Statistics on the Table. The History of Statistical Concepts and Methods, 277-290 (2002), Harvard University Press: Harvard University Press Cambridge, MA, USA and London, England
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.