×

A quantum random number generator certified by value indefiniteness. (English) Zbl 1342.65005

Summary: In this paper we propose a quantum random number generator (QRNG) that uses an entangled photon pair in a Bell singlet state and is certified explicitly by value indefiniteness. While ‘true randomness’ is a mathematical impossibility, the certification by value indefiniteness ensures that the quantum random bits are incomputable in the strongest sense. This is the first QRNG setup in which a physical principle (Kochen-Specker value indefiniteness) guarantees that no single quantum bit that is produced can be classically computed (reproduced and validated), which is the mathematical form of bitwise physical unpredictability.{ }We discuss the effects of various experimental imperfections in detail: in particular, those related to detector efficiencies, context alignment and temporal correlations between bits. The analysis is very relevant for the construction of any QRNG based on beam-splitters. By measuring the two entangled photons in maximally misaligned contexts and using the fact that two bitstrings, rather than just one, are obtained, more efficient and robust unbiasing techniques can be applied. We propose a robust and efficient procedure based on XORing the bitstrings together – essentially using one as a one-time-pad for the other – to extract random bits in the presence of experimental imperfections, as well as a more efficient modification of the von Neumann procedure for the same task. We also discuss some open problems.

MSC:

65C10 Random number generation in numerical analysis
81P68 Quantum computation

References:

[1] DOI: 10.1063/1.2338830 · doi:10.1063/1.2338830
[2] Information and Randomness – An Algorithmic Perspective (2002)
[3] DOI: 10.1007/s11047-010-9241-x · Zbl 1251.81030 · doi:10.1007/s11047-010-9241-x
[4] DOI: 10.1103/PhysRevLett.101.210401 · doi:10.1103/PhysRevLett.101.210401
[5] Physics in My Generation (1969)
[6] DOI: 10.1103/PhysRevA.79.054306 · doi:10.1103/PhysRevA.79.054306
[7] DOI: 10.1007/BF02579167 · Zbl 0618.60063 · doi:10.1007/BF02579167
[8] DOI: 10.1016/0375-9601(90)90408-G · doi:10.1016/0375-9601(90)90408-G
[9] Probability and Measure (1979)
[10] Journal of Modern Optics 47 pp 595– (2000)
[11] DOI: 10.1103/PhysRevA.81.012109 · doi:10.1103/PhysRevA.81.012109
[12] DOI: 10.1080/09500349414552281 · doi:10.1080/09500349414552281
[13] DOI: 10.1103/PhysRevLett.85.3313 · Zbl 1369.81026 · doi:10.1103/PhysRevLett.85.3313
[14] DOI: 10.1038/nature09008 · doi:10.1038/nature09008
[15] DOI: 10.1103/PhysRevA.86.062109 · doi:10.1103/PhysRevA.86.062109
[16] DOI: 10.1214/aos/1176348543 · Zbl 0754.60040 · doi:10.1214/aos/1176348543
[17] Computability 1 pp 59– (2012)
[18] DOI: 10.1119/1.11393 · doi:10.1119/1.11393
[19] DOI: 10.1103/PhysRevD.2.1418 · doi:10.1103/PhysRevD.2.1418
[20] Handbuch der Physik. Band V, Teil 1. Prinzipien der Quantentheorie I pp 1– (1958)
[21] DOI: 10.1038/35000514 · doi:10.1038/35000514
[22] DOI: 10.1103/PhysRevLett.95.040401 · doi:10.1103/PhysRevLett.95.040401
[23] DOI: 10.1103/PhysRevA.57.3304 · doi:10.1103/PhysRevA.57.3304
[24] Selecta pp 235– (1967)
[25] DOI: 10.1063/1.1150518 · doi:10.1063/1.1150518
[26] DOI: 10.1103/PhysRevLett.90.250401 · doi:10.1103/PhysRevLett.90.250401
[27] DOI: 10.1088/0256-307X/21/10/027 · doi:10.1088/0256-307X/21/10/027
[28] Quantum Optics (2008) · Zbl 1163.81001
[29] DOI: 10.1103/PhysRevD.35.3831 · doi:10.1103/PhysRevD.35.3831
[30] Deterministic Extraction from Weak Random Sources (2010)
[31] DOI: 10.1103/PhysRevA.75.032334 · doi:10.1103/PhysRevA.75.032334
[32] DOI: 10.1103/PhysRevLett.67.661 · Zbl 0990.94509 · doi:10.1103/PhysRevLett.67.661
[33] DOI: 10.1088/0034-4885/41/12/002 · doi:10.1088/0034-4885/41/12/002
[34] Information, Randomness and Incompleteness (1977)
[35] DOI: 10.1166/asl.2008.016 · doi:10.1166/asl.2008.016
[36] DOI: 10.1103/PhysRevA.82.022102 · doi:10.1103/PhysRevA.82.022102
[37] DOI: 10.1103/PhysRevLett.81.5039 · Zbl 0947.81013 · doi:10.1103/PhysRevLett.81.5039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.