×

Quantum violation of the Suppes-Zanotti inequalities and “contextuality”. (English) Zbl 1528.81030

Summary: The Suppes-Zanotti inequalities involving the joint expectations of just three binary quantum observables are (re-)derived by the hull computation of the respective correlation polytope. A min-max calculation reveals its maximal quantum violations correspond to a generalized Tsirelson bound. Notions of “contextuality” motivated by such violations are critically reviewed.

MSC:

81P16 Quantum state spaces, operational and probabilistic concepts
81P13 Contextuality in quantum theory

Software:

cddplus; cdd

References:

[1] Bell, JS, On the Einstein Podolsky Rosen paradox, Physics Physique Fizika, 1, 195-200 (1964)
[2] Clauser, JF; Horne, MA; Shimony, A.; Holt, RA, Proposed experiment to test local hidden-variable theories, Phys. Rev. Lett., 23, 880-884 (1969) · Zbl 1371.81014
[3] Eugene, P., Wigner, On hidden variables and quantum mechanical probabilities, Am. J. Phys., 38, 1005-1009 (1970)
[4] Froissart, M., Constructive generalization of Bell’s inequalities, Il Nuovo Cimento B (11, 1971-1996), 64, 241-251 (1981)
[5] Garg, A.; Mermin, DN, Farkas’s lemma and the nature of reality: Statistical implications of quantum correlations, Found. Phys., 14, 1-39 (1984)
[6] Pitowsky, I., The range of quantum probability, J. Math. Phys., 27, 1556-1565 (1986)
[7] Tsirelson, BS, Some results and problems on quantum Bell-type inequalities, Hadronic Journal Supplement, 8, 329-345 (1993) · Zbl 0788.15008
[8] Svozil, K., What is so special about quantum clicks?, Entropy, 22, 602 (2020)
[9] Uffink, J.: Subjective probability and statistical physics. In: Beisbart, C., Hartmann, S. (eds.) Probabilities in Physics, pp 25-49. Oxford University Press, Oxford (2011)
[10] Peres, A., Quantum Theory: Concepts and Methods (1993), Dordrecht: Kluwer Academic Publishers, Dordrecht · Zbl 0820.00011
[11] Wright, R., Generalized urn models, Found. Phys., 20, 881-903 (1990)
[12] Moore, E.F.: Gedanken-experiments on sequential machines. In: Shannon, C. E., McCarthy, J. (eds.) Automata Studies. (AM-34), pp 129-153. Princeton University Press, Princeton (1956)
[13] Svozil, K., Logical equivalence between generalized urn models and finite automata, Int. J. Theoretical Physics, 44, 745-754 (2005) · Zbl 1104.81033
[14] Filipp, S.; Svozil, K., Generalizing Tsirelson’s bound on Bell inequalities using a min-max principle, Physical Rev. Lett., 93, 130407 (2004)
[15] Suppes, P.; Zanotti, M., When are probabilistic explanations possible?, Synthese, 48, 191-199 (1981) · Zbl 0476.03011
[16] Brody, TA, The Suppes-Zanotti theorem and the Bell inequalities, Revista Mexicana de Fí,sica, 35, 170-187 (1989) · Zbl 1291.81013
[17] Khrennikov, A.: Can there be given any meaning to contextuality without incompatibility? Int. J. Theoretical Phys. doi:10.1007/s10773-020-04666-z(2020) · Zbl 1473.81018
[18] Boole, G., On the theory of probabilities, Philos. Trans. R. Soc. Lond., 152, 225-252 (1862) · Zbl 1319.60004
[19] Pitowsky, I., George Boole’s ‘conditions of possible experience’ and the quantum puzzle, British J. Philosophy Sci., 45, 95-125 (1994)
[20] Pitowsky, I., Quantum Probability — Quantum Logic Lecture Notes in Physics, vol. 321 (1989), Berlin, Heidelberg: Springer-Verlag, Berlin, Heidelberg · Zbl 0668.60096
[21] Ziegler, GM, Lectures on Polytopes (1994), New York: Springer, New York · Zbl 0823.52002
[22] Schrijver, A., Theory of Linear and Integer Programming, Wiley Series in Discrete Mathematics & Optimization (1998), New York Toronto, London: John Wiley & Sons, New York Toronto, London · Zbl 0970.90052
[23] Fukuda, K.: Frequently asked questions in polyhedral computation. Accessed on July 29th 2017 (2014)
[24] Pitowsky, I., Correlation polytopes their geometry and complexity, Math. Program., 50, 395-414 (1991) · Zbl 0741.90054
[25] Travis, R.D.: The Logic of a Physical Theory, Master’s thesis, Wayne State University, Detroit, Michigan, USA (1962), Master’s Thesis under the supervision of David J. Foulis
[26] Greechie, R.J.: Orthomodular Lattices, Ph.D. thesis, University of Florida, Florida USA (1996) · Zbl 0553.06012
[27] Troffaes, M.: pycddlib is a Python wrapper for Komei Fukuda’s cddlib. Accessed on December 22th, 2020 (2020)
[28] Fukuda, K: cdd and cddplus homepage, cddlib package cddlib-094h, (2000,2017), Accessed on July 1st, 2017
[29] Motzkin, T.S., Raiffa, H., Thompson, G.L., Thrall, R.M.: The double description method. In: Kuhn, H.W., Tucker, A.W. (eds.) Contributions to Theory of Games, vol. 2. Princeton University Press, Princeton (1953) · Zbl 0050.14201
[30] Specker, E., Die Logik nicht gleichzeitig entscheidbarer Aussagen, Dialectica, 14, 239-246 (1960)
[31] Greenberger, D.M., Horne, M.A., Zeilinger, A.: Going beyond Bell’s theorem. In: Kafatos, M. (ed.) Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, Fundamental Theories of Physics. Kluwer Academic Publishers, Springer Netherlands, Dordrecht. arXiv:0712.0921, vol. 37, pp 69-72 (1989)
[32] Greenberger, DM; Horne, MA; Shimony, A.; Zeilinger, A., Bell’s theorem without inequalities, Am. J. Phys., 58, 1131-1143 (1990) · Zbl 0948.81511
[33] Mermin, DN, What’s wrong with these elements of reality, Phys. Today, 43, 9-10 (1990)
[34] Bouwmeester, D.; Pan, J-W; Daniell, M.; Weinfurter, H.; Zeilinger, A., Observation of three-photon greenberger-horne-zeilinger entanglement, Phys. Rev. Lett., 82, 1345-1349 (1999) · Zbl 1031.81510
[35] Jian-Wei Pan, D.; Bouwmeester, M.; Weinfurter, DH; Zeilinger, A., Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement, Nature, 403, 515-519 (2000)
[36] Bacon, D.: The GHZgame. Section I of CSE 599d - Quantum Computing Quantum Entanglement and Bell’s Theorem lecture notes accessed on January 9th (2021)
[37] Svozil, K.: Revisiting the Greenberger-Horne-Zeilinger argument in terms of its logical structure, orthogonality, and probabilities, arXiv:2006.14623(2020)
[38] Cirel’son (=Tsirel’son), BS, Quantum generalizations of Bell’s inequality, Lett. Math. Phys., 4, 93-100 (1980)
[39] Pitowsky, I.; Svozil, K., New optimal tests of quantum nonlocality, Phys. Rev. A, 64, 014102 (2001)
[40] Sliwa, C., Symmetries of the Bell correlation inequalities, Phys. Lett. A, 317, 165-168 (2003) · Zbl 1056.81007
[41] Colins, D.; Gisin, N., A relevant two qbit Bell inequality inequivalent to the CHSH inequality, J. Phys. A: Math. Gen., 37, 1775-1787 (2004) · Zbl 1069.81507
[42] Dzhafarov, EN; Cervantes, VH; Kujala, JV, Contextuality in canonical systems of random variables, Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci., 375, 20160389 (2017) · Zbl 1404.81024
[43] Abramsky, S: Contextuality: At the borders of paradox. In: Landry, E. (ed.) Categories for the Working Philosopher. arXiv:2011.04899, pp 262-285. Oxford University Press, Oxford (2018)
[44] Grangier, P., Contextual objectivity: a realistic interpretation of quantum mechanics, European J. Phys., 23, 331-337 (2002)
[45] Khrennikov, A., Bohr against Bell: complementarity versus nonlocality, Open Physics, 15, 734-738 (2017)
[46] Jaeger, G., Quantum contextuality in the copenhagen approach, Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci., 377, 20190025 (2019) · Zbl 1462.81018
[47] Jaeger, G., Quantum contextuality and indeterminacy, Entropy, 22, 867 (2020)
[48] Aufféves, A.; Grangier, P., Extracontextuality and extravalence in quantum mechanics, Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci., 376, 20170311 (2018)
[49] Auffèves, A.; Grangier, P., Deriving born’s rule from an inference to the best explanation, Foundations of Physics, 50, 1781-1793 (2020) · Zbl 1454.81015
[50] Grangier, P.: Completing the quantum formalism in a contextually objective framework, preprint arXiv:2003.03121 (2020)
[51] Budroni, C., Cabello, A., Gühne, O., Kleinmann, M., Larsson, J.Å.: Quantum contextuality, arXiv:2102.13036 [quant-ph] (2021)
[52] Svozil, K.: Varieties of contextuality emphasizing (non)embeddability, arXiv:2103.06110 (2021)
[53] Cabello, A., Experimentally testable state-independent quantum contextuality, Phys. Rev. Lett., 101, 210401 (2008)
[54] Cabello, A.: Converting contextuality into nonlocality, arXiv:2011.13790 [quant-ph] (2020)
[55] Svozil, K., Proposed direct test of a certain type of noncontextuality in quantum mechanics, Phys. Rev. A, 80, 040102 (2009)
[56] Svozil, K., How much contextuality?, Nat. Comput., 11, 261-265 (2012) · Zbl 1339.81013
[57] Abramsky, S.; Barbosa, RS; Mansfield, S., Contextual fraction as a measure of contextuality, Phys. Rev. Lett., 119, 050504 (2017)
[58] Kujala, JV; Dzhafarov, EN, Measures of contextuality and non-contextuality, Philos. Trans. R. Soc. A Mathematical, Phys. Eng. Sci., 377, 20190149, 16 (2019) · Zbl 1462.81019
[59] Bohr, N.: Discussion with Einstein on epistemological problems in atomic physics. In: Schilpp, P.A. (ed.) Albert Einstein: Philosopher-Scientist. The Library of Living Philosophers, Evanston, Ill., pp 200-241 (1949) · Zbl 0038.14804
[60] Bell, JS, On the problem of hidden variables in quantum mechanics, Rev. Mod. Phys., 38, 447-452 (1966) · Zbl 0152.23605
[61] Bohr, N.: The causality problem in atomic physics. In: New Theories in Physics, International Institute of Intellectual Co-operation, Paris. conference organized in collaboration with the International Union of Physics and the Polish Intellectual Co-operation Committee, Warsaw, May 30th-June 3rd 1938, reprinted in [62], vol. 11-30 (1939)
[62] Bohr, N.: The causality problem in atomic physics. In: Niels Bohr Collected Works, vol. 7, pp 299-322. Elsevier (1996)
[63] Hilgevoord, J., Uffink, J.: The uncertainty principle. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University winter 2016 edn. (2016) · Zbl 0959.81502
[64] Ozawa, M.: Universally valid reformulation of the Heisenberg uncertainty principle on noise and disturbance in measurement, Phys. Rev. A 67. doi:10.1103/physreva.67.042105 (2003)
[65] Glauber, R.J. In: Pikes, E.R., Sarkar, S. (eds.) : Amplifiers, attenuators and the quantum theory of measurement. Adam Hilger, Bristol (1986)
[66] Glauber, R.J.: Amplifiers, attenuators and Schrödingers cat. In: Quantum Theory of Optical Coherence, Wiley-VCH Verlag GmbH & Co KGaA, pp 537-576 (2007)
[67] Glauber, RJ, Amplifiers, attenuators, and Schrödinger’s cat, Ann. N. Y. Acad. Sci., 480, 336-372 (1986)
[68] Englert, B-G; Schwinger, J.; Scully, MO, Is spin coherence like Humpty-Dumpty? I. Simplified treatment, Found. Phys., 18, 1045-1056 (1988)
[69] Schwinger, J.; Scully, MO; Englert, B-G, Is spin coherence like Humpty-Dumpty? II. General theory, Zeitschrift für Physik D: Atoms, Molecules and Clusters, 10, 135-144 (1988)
[70] Svozil, K., Quantum information via state partitions and the context translation principle, J. Modern Optics, 51, 811-819 (2004) · Zbl 1070.81506
[71] Busch, P., Quantum states and generalized observables: a simple proof of Gleason’s theorem, Phys. Rev. Lett., 91, 120403, 4 (2003)
[72] Caves, CM; Fuchs, CA; Manne, KK; Renes, JM, Gleason-type derivations of the quantum probability rule for generalized measurements, Foundations of Physics: An International Journal Devoted to the Conceptual Bases and Fundamental Theories of Modern Physics, 34, 193-209 (2004) · Zbl 1063.81012
[73] Granström, H.: Gleason’s theorem. Master’s thesis, Stockholm University (2006)
[74] Wright, V.J.: Gleason-type theorems and general probabilistic theories. Ph.D. thesis, University of York (2019)
[75] Wright, VJ; Weigert, S., A gleason-type theorem for qubits based on mixtures of projective measurements, J. Phys. A Math. Theor., 52, 055301 (2019) · Zbl 1422.81024
[76] Wright, VJ; Weigert, S., Gleason-type theorems from Cauchy’s functional equation, Found. Phys., 49, 594-606 (2019) · Zbl 1431.81029
[77] Svozil, K., Faithful orthogonal representations of graphs from partition logics, Soft Computing, 24, 10239-10245 (2020) · Zbl 1492.81024
[78] Kochen, S., Specker, E.P.: Logical structures arising in quantum theory. In: The Theory of Models, Proceedings of the 1963 International Symposium at Berkeley, North Holland, Amsterdam, New York, Oxford. reprinted in Ref. [98, pp. 209-221], pp 177-189 (1965) · Zbl 0171.25402
[79] Pitowsky, I., Betting on the outcomes of measurements: a bayesian theory of quantum probability, Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 34, 395-414 (2003) · Zbl 1222.81100
[80] Pitowsky, I.: Quantum mechanics as a theory of probability. In: Demopoulos, W., Pitowsky, I. (eds.) Physical Theory and its Interpretation, The Western Ontario Series in Philosophy of Science. arXiv:quant-ph/0510095, vol. 72, pp 213-240. Springer, Netherlands (2006)
[81] Gerelle, E.R., Greechie, R.J., Miller, F.R.: Weights on spaces. In: Enz, C.P., Mehra, J. (eds.) Physical Reality and Mathematical Description. D. Reidel Publishing Company, Springer Netherlands, Dordrecht, Holland, pp 167-192 (1974) · Zbl 0354.02025
[82] Wright, R.: The state of the pentagon. A nonclassical example. In: Marlow, A.R. (ed.) Mathematical Foundations of Quantum Theory, pp 255-274. Academic Press, New York (1978)
[83] Klyachko, AA; Can, MA; Binicioğlu, S.; Shumovsky, AS, Simple test for hidden variables in spin-1 systems, Phys. Rev. Lett., 101, 020403 (2008) · Zbl 1228.81068
[84] Lovász, L., On the Shannon capacity of a graph, IEEE Trans. Inf. Theory, 25, 1-7 (1979) · Zbl 0395.94021
[85] Lovász, L.; Saks, M.; Schrijver, A., Orthogonal representations and connectivity of graphs, Linear Algebra Appl., 114-115, 439-454 (1989) · Zbl 0681.05048
[86] Kochen, S.; Specker, EP, The problem of hidden variables in quantum mechanics, Journal of Mathematics and Mechanics (now Indiana University Mathematics Journal), 17, 59-87 (1967) · Zbl 0156.23302
[87] Cabello, A.; Estebaranz, JM; García-Alcaine, G., Bell-Kochen-Specker theorem: A proof with 18 vectors, Phys. Lett. A, 212, 183-187 (1996) · Zbl 1073.81515
[88] Abbott, AA; Calude, CS; Svozil, K., A variant of the Kochen-Specker theorem localising value indefiniteness, J. Math. Phys., 56, 102201 (2015) · Zbl 1333.81017
[89] Greechie, RJ, Orthomodular lattices admitting no states, Journal of Combinatorial Theory Series A, 10, 119-132 (1971) · Zbl 0219.06007
[90] Kalmbach, G., Orthomodular Lattices London Mathematical Society Monographs, vol. 18 (1983), London and New York: Academic Press, London and New York · Zbl 0512.06011
[91] Bretto, A.: Hypergraph theory, Mathematical Engineering. Springer, Cham, Heidelberg, New York, Dordrecht, London, pp. xiv+ 119 (2013) · Zbl 1269.05082
[92] Bertlmann, RA, Real or not real that is the question …, The European Phys. J. H, 45, 205-236 (2020)
[93] Einstein, A.; Podolsky, B.; Rosen, N., Can quantum-mechanical description of physical reality be considered complete?, Phys. Rev., 47, 777-780 (1935) · Zbl 0012.04201
[94] Yanofsky, N.S.: The mind and the limitations of physics, preprint, accessed on January, 14, 2021 (2019)
[95] Hertz, H.: Prinzipien der Mechanik, Johann Ambrosius Barth (Arthur Meiner, Leipzig) mit einem Vorwort von H. von Helmholtz (1894) · JFM 25.1310.01
[96] Hertz, H.: The principles of mechanics presented in a new form, (MacMillan and Co., Ltd., London and New York) with a forword by H. von Helmholtz, translated by D. E. Jones and J. T. Walley (1899) · JFM 30.0617.07
[97] Pitowsky, I., Infinite and finite Gleason’s theorems and the logic of indeterminacy, J. Math. Phys., 39, 218-228 (1998) · Zbl 0921.03057
[98] Specker, E., Selecta (1990), Birkhäuser: Basel, Birkhäuser · Zbl 0699.01038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.