×

Numerical analysis of unsteady implicitly constituted incompressible fluids: 3-field formulation. (English) Zbl 1434.76065

Summary: In the classical theory of fluid mechanics a linear relationship between the shear stress and the symmetric velocity gradient tensor is often assumed. Even when a nonlinear relationship is assumed, it is typically formulated in terms of an explicit relation. Implicit constitutive models provide a theoretical framework that generalizes this, allowing for general implicit constitutive relations. Since it is generally not possible to solve explicitly for the shear stress in the constitutive relation, a natural approach is to include the shear stress as a fundamental unknown in the formulation of the problem. In this work we present a mixed formulation with this feature, discuss its solvability and approximation using mixed finite element methods, and explore the convergence of the numerical approximations to a weak solution of the model.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35Q35 PDEs in connection with fluid mechanics
76A05 Non-Newtonian fluids

References:

[1] D. N. Arnold, F. Brezzi, and J. Douglas, PEERS: A new mixed finite element for plane elasticity, Japan J. Appl. Math., 1 (1984), pp. 347-367. · Zbl 0633.73074
[2] D. N. Arnold and R. Winther, Mixed finite elements for elasticity, Numer. Math., 92 (2002), pp. 401-419. · Zbl 1090.74051
[3] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith, S. Zampini, H. Zhang, and H. Zhang, PETSc Users Manual, Tech. Report ANL-95/11-Revision 3.8, Argonne National Laboratory, 2017, http://www.mcs.anl.gov/petsc.
[4] M. A. Behr, L. P. Franca, and T. E. Tezduyar, Stabilized finite element methods for the velocity-pressure-stress formulation of incompressible flows, Comput. Methods Appl. Mech. Engrg., 104 (1993), pp. 31-48. · Zbl 0771.76033
[5] L. Belenki, L. Berselli, L. Diening, and M. R\ružička, On the finite element approximation of p-Stokes systems, SIAM J. Numer. Anal., 50 (2012), pp. 373-397, https://doi.org/10.1137/10080436X. · Zbl 1426.76221
[6] L. Berselli, L. Diening, and M. R\ružička, Optimal error estimate for semi-implicit space-time discretization for the equations describing incompressible generalized Newtonian fluids, IMA J. Numer. Anal., 35 (2015), pp. 680-697. · Zbl 1326.76056
[7] J. Blechta, J. Málek, and K. R. Rajagopal, On the Classification of Incompressible Fluids and a Mathematical Analysis of the Equations That Govern Their Motion, https://arxiv.org/abs/1902.04853, 2019. · Zbl 1432.76075
[8] D. Boffi, F. Brezzi, and M. Fortin, Mixed Finite Element Methods and Applications, Springer, New York, 2013. · Zbl 1277.65092
[9] D. Breit, L. Diening, and S. Schwarzacher, Solenoidal Lipschitz truncation for parabolic PDEs, Math. Models Methods Appl. Sci., 23 (2013), pp. 2671-2700. · Zbl 1309.76024
[10] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Ser. Comput. Math. 15, Springer, New York, 1991. · Zbl 0788.73002
[11] P. R. Brune, M. G. Knepley, B. F. Smith, and X. Tu, Composing scalable nonlinear algebraic solvers, SIAM Rev., 57 (2015), pp. 535-565, https://doi.org/10.1137/130936725 · Zbl 1336.65030
[12] M. Bulíček, P. Gwiazda, J. Malek, K. R. Rajagopal, and A. Świerczewska-Gwiazda, On flows of fluids described by an implicit constitutive equation characterized by a maximal monotone graph, in Mathematical Aspects of Fluid Mechanics, London Math. Soc. Lecture Note Ser. 402, Cambridge University Press, Cambridge, UK, 2012, pp. 23-51. · Zbl 1296.35137
[13] M. Bulíček, P. Gwiazda, J. Málek, and A. Świerczewska-Gwiazda, On steady flows of incompressible fluids with implicit power-law-like rheology, Adv. Calc. Var., 2 (2009), pp. 109-136. · Zbl 1233.35164
[14] M. Bulíček, P. Gwiazda, J. Málek, and A. Świerczewska-Gwiazda, On unsteady flows of implicitly constituted incompressible fluids, SIAM J. Math. Anal., 44 (2012), p. 2756-2801, https://doi.org/10.1137/110830289. · Zbl 1256.35074
[15] M. Bulíček, J. Málek, V. Pr\ruša, and E. Süli, PDE analysis of a class of thermodynamically compatible viscoelastic rate-type fluids with stress-diffusion, in Mathematical Analysis in Fluid Mechanics: Selected Recent Results, AMS Contemp. Math. 710, AMS, Providence, RI, 2018, pp. 25-51. · Zbl 1404.35346
[16] M. Chatzimina, G. C. Georgiou, I. Argyropaidas, E. Mitsoulis, and R. R. Huilgol, Cessation of Couette and Poiseuille flows of a Bingham plastic and finite stopping times, J. Non-Newtonian Fluid Mech., 129 (2005), pp. 117-127. · Zbl 1195.76012
[17] P. Clément, Approximation by finite element functions using local regularization, RAIRO, Anal. Numér., 9 (1975), pp. 77-84. · Zbl 0368.65008
[18] M. Crouzeix and P. A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations I, ESAIM Math. Model. Numer. Anal., 7 (1973), pp. 33-75. · Zbl 0302.65087
[19] T. A. Davis, Algorithm 832: UMFPACK \(V4.3\)—An Unsymmetric-Pattern Multifrontal Method, ACM Trans. Math. Software, 30, pp. 196-199, 2004. · Zbl 1072.65037
[20] E. DiBenedetto, Degenerate Parabolic Equations, Springer, New York, 1993. · Zbl 0794.35090
[21] L. Diening, D. Kreuzer, and E. Süli, Finite element approximation of steady flows of incompressible fluids with implicit power-law-like rheology, SIAM J. Numer. Anal., 51 (2013), pp. 984-1015, https://doi.org/10.1137/120873133. · Zbl 1268.76030
[22] L. Diening, M. Ružička, and J. Wolf, Existence of weak solutions for unsteady motions of generalized Newtonian fluids, Ann. Sc. Norm. Super. Pisa Cl. Sci., 9 (2010), pp. 1-46. · Zbl 1253.76017
[23] L. Diening, S. Schwarzacher, V. Stroffolini, and A. Verde, Parabolic Lipschitz truncation and caloric approximation, Calc. Var., 56 (2016). · Zbl 1377.35144
[24] Y. Dimakopoulos and J. Tsamopoulos, Transient displacement of a viscoplastic material by air in straight and suddenly constricted tubes, J. Non-Newtonian Fluid Mech., 112 (2003), pp. 43-75. · Zbl 1038.76505
[25] S. Eckstein and M. R\ružička, On the full space-time discretization of the generalized Stokes equations: The Dirichlet case, SIAM J. Numer. Anal., 56 (2018), pp. 2234-2261, https://doi.org/10.1137/16M1099741. · Zbl 1433.65184
[26] V. J. Ervin, J. S. Howell, and I. Stanculescu, A dual-mixed approximation method for a three-field model of a nonlinear generalized Stokes problem, Comput. Methods Appl. Mech. Engrg., 197 (2008), pp. 2886-2900. · Zbl 1194.76114
[27] M. Farhloul and M. Fortin, New mixed finite element for the Stokes and elasticity problems, SIAM J. Numer. Anal., 30 (1993), pp. 971-990, https://doi.org/10.1137/0730051. · Zbl 0777.76051
[28] M. Farhloul and H. Manouzi, Analysis of non-singular solutions of a mixed Navier-Stokes formulation, Comput. Methods Appl. Mech. Engrg., 129 (1996), pp. 115-131. · Zbl 0865.76039
[29] M. Farhloul, S. Nicaise, and L. Paquet, A refined mixed finite-element method for the stationary Navier-Stokes equations with mixed boundary conditions, IMA J. Numer. Anal., 28 (2008), pp. 25-45. · Zbl 1166.76028
[30] M. Farhloul, S. Nicaise, and L. Paquet, A priori and a posteriori error estimations for the dual mixed finite element method of the Navier-Stokes problem, Numer. Methods Partial Differential Equations, 25 (2009), pp. 843-869. · Zbl 1166.76027
[31] G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady State Problems, 2nd ed., Springer, New York, 2011. · Zbl 1245.35002
[32] C. Geuzaine and J. F. Remacle, Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities, Internat. J. Numer. Mathods Engrg., 79 (2009), pp. 1309-1331. · Zbl 1176.74181
[33] V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, Springer, New York, 1986. · Zbl 0585.65077
[34] V. Girault and L. R. Scott, A quasi-local interpolation operator preserving the discrete divergence, Calcolo, 40 (2003), pp. 1-19. · Zbl 1072.65014
[35] R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer, New York, 1984. · Zbl 0536.65054
[36] J. Guzmán and M. Neilan, Conforming and divergence-free Stokes elements in three dimensions, IMA J. Numer. Anal., 34 (2014), pp. 1489-1508. · Zbl 1305.76056
[37] J. Guzmán and M. Neilan, Conforming and divergence-free Stokes elements on general triangular meshes, Math. Comp., 83 (2014), pp. 15-36. · Zbl 1322.76041
[38] A. Hirn, Approximation of the p-Stokes equations with equal-order finite elements, J. Math. Fluid Mech., 15 (2013), pp. 65-88. · Zbl 1430.76365
[39] J. S. Howell, Dual-mixed finite element approximation of Stokes and nonlinear Stokes problems using trace-free velocity gradients, J. Comput. Appl. Math., 231 (2009), pp. 780-792. · Zbl 1167.76021
[40] J. S. Howell and N. J. Walkington, Dual-mixed finite element methods for the Navier-Stokes equations, ESAIM Math. Model. Numer. Anal., 47 (2013), pp. 789-805. · Zbl 1266.76029
[41] J. Hron, J. Málek, J. Stebel, and K. Touška, A Novel View on Computations of Steady Flows of Bingham Fluids Using Implicit Constitutive Relations, preprint, Project MORE, 2017.
[42] R. R. Huilgol, B. Mena, and J. M. Piau, Finite stopping time problems and rheometry of Bingham fluids, J. Non-Newtonian Fluid Mech., 102 (2002), pp. 97-107. · Zbl 0996.76005
[43] C. Kreuzer and E. Süli, Adaptive finite element approximation of steady flows of incompressible fluids with implicit power-law-like rheology, ESAIM Math. Model. Numer. Anal., 50 (2016), pp. 1333-1369. · Zbl 1457.65201
[44] J. L. Lions, Quelques Méthodes De Résolution Des Problèmes Aux Limites Non Linéaires, Dunod, Paris, 1969. · Zbl 0189.40603
[45] A. Logg, K. A. Mardal, and G. N. Wells, FEniCS: Automated Solution of Differential Equations by the Finite Element Method, Springer, New York, 2011, pp. 337-359, https://doi.org/10.1007/978-3-642-23099-8. · Zbl 1247.65105
[46] E. Maringová and J. Žabenský, On a Navier-Stokes-Fourier-like system capturing transitions between viscous and inviscid fluid regimes and between no-slip and perfect-slip boundary conditions, Nonlinear Anal. Real World Appl., 41 (2018), pp. 152-178. · Zbl 1390.35279
[47] E. Mitsoulis and R. R. Huilgol, Entry flows of Bingham plastics in expansions, J. Non-Newtonian Fluid Mech., 122 (2004), pp. 45-54. · Zbl 1143.76342
[48] T. C. Papanastasiou, Flows of materials with yield, J. Rheol., 31 (1987), pp. 385-404. · Zbl 0666.76022
[49] T. C. Papanastasiou, G. Georgiou, and A. Alexandrou, Viscous Fluid Flow, CRC Press, Boca Raton, FL, 1999. · Zbl 0946.76001
[50] V. Pr\ruša and K. R. Rajagopal, A new class of models to describe the response of electrorheological and other field dependent fluids, Adv. Struct. Mater., 89 (2018), pp. 655-673.
[51] K. R. Rajagopal, On implicit constitutive theories, Appl. Math., 48 (2003), pp. 279-319. · Zbl 1099.74009
[52] K. R. Rajagopal, On implicit constitutive theories for fluids, J. Fluid Mech., 550 (2006), pp. 243-249. · Zbl 1097.76009
[53] K. R. Rajagopal, The elasticity of elasticity, Z. Angew. Math. Phys., 580 (2007), pp. 309-317. · Zbl 1113.74006
[54] K. R. Rajagopal and A. R. Srinivasa, On the thermodynamics of fluids defined by implicit constitutive relations, Z. Angew. Math. Phys., 59 (2008), pp. 715-729. · Zbl 1149.76007
[55] F. Rathgeber, D. A. Ham, L. Mitchell, M. Lange, F. Luporini, A. T. Mcrae, G.-T. Bercea, G. R. Markall, and P. H. Kelly, Firedrake: Automating the finite element method by composing abstractions, ACM Trans. Math. Software, 43 (2016). · Zbl 1396.65144
[56] T. Roubiček, Nonlinear Partial Differential Equations with Applications, 2nd ed., Birkhäuser, Basel, 2013. · Zbl 1270.35005
[57] V. Ruas, An optimal three-field finite element approximation of the Stokes system with continuous extra stresses, Japan J. Appl. Math., 11 (1994), pp. 113-130. · Zbl 0797.76045
[58] V. Ruas, Finite element methods for the three-field Stokes system in \({\mathbb{R}^3} \): Galerkin methods, RAIRO Modél. Math. Anal. Numér., 30 (1996), pp. 489-525. · Zbl 0853.76041
[59] D. Sandri, A posteriori estimators for mixed finite element approximations of a fluid obeying the power law, Comput. Methods Appl. Mech. Engrg., 5 (1998), pp. 329-340. · Zbl 0953.76057
[60] L. R. Scott and M. Vogelius, Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials, Math. Model. Numer. Anal., 19 (1985), pp. 111-143. · Zbl 0608.65013
[61] J. Simon, Compact sets in the space \(L^p(0,T;B)\), Ann. Mat. Pura Appl., 4 (1987), pp. 65-96. · Zbl 0629.46031
[62] E. Süli and T. Tscherpel, Fully discrete finite element approximation of unsteady flows of implicitly constituted incompressible fluids, IMA J. Numer. Anal., (2019), dry097, https://doi.org/10.1093/imanum/dry097. · Zbl 1464.65131
[63] T. Tscherpel, FEM for the Unsteady Flow of Implicitly Constituted Incompressible Fluids, Ph.D. thesis, University of Oxford, Oxford, UK, 2018.
[64] S. Zhang, A new family of stable mixed finite elements for the 3D Stokes equations, Math. Comp., 74 (2005), pp. 543-554. · Zbl 1085.76042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.