×

Solenoidal Lipschitz truncation for parabolic PDEs. (English) Zbl 1309.76024

Summary: We consider functions \(u \in L^{\infty}(L^{2}) \cap L^{p}(W^{1,p})\) with \(1<p< \infty\) on a time-space domain. Solutions to nonlinear evolutionary PDEs typically belong to these spaces. Many applications require a Lipschitz approximation \(u_{\lambda}\) of \(u\) which coincides with \(u\) on a large set. For problems arising in fluid mechanics one needs to work with solenoidal (divergence-free) functions. Thus, we construct a Lipschitz approximation, which is also solenoidal. As an application we revise the existence proof for non-stationary generalized Newtonian fluids of L. Diening et al. [Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 9, No. 1, 1–46 (2010; Zbl 1253.76017)]. Since div \(u_{\lambda}=0\), we are able to work in the pressure free formulation, which heavily simplifies the proof. We also provide a simplified approach to the stationary solenoidal Lipschitz truncation of D. Breit et al. [J. Differ. Equations 253, No. 6, 1910–1942 (2012; Zbl 1245.35080)].

MSC:

76B03 Existence, uniqueness, and regularity theory for incompressible inviscid fluids
35Q30 Navier-Stokes equations
35J60 Nonlinear elliptic equations
26B35 Special properties of functions of several variables, Hölder conditions, etc.
76D05 Navier-Stokes equations for incompressible viscous fluids

References:

[1] Acerbi, E.Fusco, N., Material Instabilities in Continuum Mechanics (Oxford Univ. Press, 1988) pp. 1-5.
[2] Astarita, G.; Marrucci, G., Principles of Non-Newtonian Fluid Mechanics, 1974, McGraw-Hill
[3] Bird, R.; Armstrong, R.; Hassager, O., Dynamics of Polymeric Liquids, Volume 1, Fluid Mechanics, 1987, Wiley
[4] Bogovskiĭ, M. E., Theory of Cubature Formulas and the Application of Functional Analysis to Problems of Mathematical Physics (Akad. Nauk SSSR Sibirsk. Otdel. Inst. Mat., 1980) p. 149. · Zbl 0452.00015
[5] Breit, D.Diening, L.Fuchs, M., J. Differential Equations253, 1910 (2012), DOI: 10.1016/j.jde.2012.05.010. · Zbl 1245.35080
[6] Brenner, S. C.; Ridgway Scott, L., The Mathematical Theory of Finite Element Methods, 15, 1994, Springer · Zbl 0804.65101
[7] L. Diening, Ch. Kreuzer and E. Süli, Finite element approximation of steady flows of incompressible fluids with implicit power-law-like rheology, to apper in SIAM J. Numer. Anal. (2013).
[8] Diening, L.Málek, J.Steinhauer, M., ESAIM Control Optim. Calc. Var.14, 211 (2008), DOI: 10.1051/cocv:2007049.
[9] Diening, L.Růžička, M., Numer. Math.107, 107 (2007), DOI: 10.1007/s00211-007-0079-9.
[10] Diening, L.Růžička, M.Schumacher, K., Ann. Acad. Sci. Fenn. Ser. A. I. Math.35, 87 (2010). · Zbl 1194.26022
[11] Diening, L.Růžička, M.Wolf, J., Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)9, 1 (2010).
[12] Eyring, H. J., J. Chem. Phys.4, 283 (1936), DOI: 10.1063/1.1749836.
[13] Frehse, J.Málek, J.Steinhauer, M., SIAM J. Math. Anal.34, 1064 (2003), DOI: 10.1137/S0036141002410988.
[14] Kinnunen, J.Lewis, J. L., Ark. Mat.40, 105 (2002), DOI: 10.1007/BF02384505.
[15] Ladyzhenskaya, O. A., Proc. Stek. Inst. Math.102, 95 (1967).
[16] Ladyzhenskaya, O. A., Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)7, 126 (1968). · Zbl 0195.10602
[17] O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, 2nd English edn, revised and enlarged, Translated from the Russian by Richard A. Silverman and John Chu, Mathematics and its Applications, Vol. 2 (Gordon and Breach Science Publishers, 1969). · Zbl 0184.52603
[18] Lions, J.-L., Quelques méthodes de résolution des problèmes aux limites non linéaires, 1969, Dunod · Zbl 0189.40603
[19] Müller, R., Bayreuth. Math. Schr.49, 115 (1995).
[20] Růžička, M., Electrorheological Fluids: Modeling and Mathematical Theory, 1748, 2000, Springer · Zbl 0962.76001
[21] Stein, E. M., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, 1993, Princeton Univ. Press · Zbl 0821.42001
[22] Wolf, J., J. Math. Fluid Mech.9, 104 (2007), DOI: 10.1007/s00021-006-0219-5.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.