×

A posteriori estimators for mixed finite element approximations of a fluid obeying the power law. (English) Zbl 0953.76057

Summary: We study a posteriori error estimation for the approximation by finite element method of a fluid which obeys the power law: \(-2\mu\nabla\cdot (|d(u)|^{r- 2}d(u))+ \nabla p=f\), \(\nabla u= 0\), \(1< r< 2\). Abstract and calculable a posteriori estimators are given in two-fields and in a three-fields version of this problem. Furthermore, we give some examples of finite element spaces satisfying the inf-sup condition, which relates the discrete space of tensors and the discrete space of velocities, needed for this formulation.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76A05 Non-Newtonian fluids
65N15 Error bounds for boundary value problems involving PDEs
Full Text: DOI

References:

[1] Amrouche, C.; Girault, V., Propriétés fonctionnelles d’opérateurs. Application au problème de Stokes en dimension quelconque, (Publication du Laboratoire d’Analyse Numérique, no 90025 (1990), Université Pierre et Marie Curie: Université Pierre et Marie Curie Paris, France)
[2] Baranger, J.; Amri, H. El, Estimateurs a posteriori d’erreur pour le calcul adaptatif d’écoulements quasi-Newtoniens, \(M^2\) AN, 25, 1, 31-48 (1991) · Zbl 0712.76068
[3] Baranger, J.; Georget, P.; Najib, K., Error estimates for a mixed finite element method for a non Newtonian flow, J. Non-Newt. Fluid Mech., 23, 415-421 (1987) · Zbl 0619.76003
[4] Baranger, J.; Najib, K., Analyse numérique des écoulements quasi-Newtoniens dont la viscosité obéit à la loi puissance ou la loi de Carreau, Numer. Math., 58, 35-49 (1990) · Zbl 0702.76007
[5] Baranger, J.; Najib, K.; Sandri, D., Numerical analysis of a three fields model for a quasi-Newtonian flow, Comput. Methods Appl. Mech. Engrg., 109, 281-292 (1993) · Zbl 0844.76004
[6] Barrett, J. B.; Liu, W. B., Quasi-norm error bounds for the finite element approximation of a non-Newtonian flow, Numer. Math., 68, 437-456 (1994) · Zbl 0811.76036
[7] Bird, R. B.; Armstrong, R. C.; Hassager, O., Dynamics of Polymeric Liquids I (1987), John Wiley and Sons: John Wiley and Sons Amsterdam
[8] Ciarlet, P. G., The Finite Element Method for Elliptic Problems (1978), North-Holland: North-Holland Amsterdam · Zbl 0445.73043
[9] Amri, H. El, (Thèse d’Etat (1990), Université Lyon I)
[10] Girault, V.; Raviart, P. A., Finite element method for Navier-Stokes equations, (Theory and Algorithms (1986), Springer: Springer Berlin-Heidelberg-New York) · Zbl 0396.65070
[11] Loula, A. F.D.; Guerreiro, J. N.C., A new finite element method for nonlinear creeping flows, Comput. Methods Appl. Mech. Engrg., 79, 1, 87-109 (1990) · Zbl 0716.73091
[12] Sandri, D., Sur l’approximation numérique des écoulements quasi-Newtoniens dont la viscosité suit la loi puissance ou la loi de Carreau, \(M^2\) AN, 27, 131-155 (1991) · Zbl 0764.76039
[13] Verfürth, R., A Review of a posteriori Error Estimation and Adaptative Mesh-Refinement Techniques (1996), Wiley Teubner: Wiley Teubner Chichester · Zbl 0853.65108
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.