×

The conjugate gradient methods for solving the generalized periodic Sylvester matrix equations. (English) Zbl 1427.90224

Summary: This work is devoted to designing two conjugate gradient methods for the least Frobenius norm solution of the generalized periodic Sylvester matrix equations. When the studied problem is consistent, the first conjugate gradient method can find its solution within finite iterative steps in the absence of round-off errors. Furthermore, its least Frobenius norm solution can be obtained with some special kind of initial matrices. When the studied problem is inconsistent, the second conjugate gradient method with some special kind of initial matrices can find its least squares solution with the least Frobenius norm within finite iterative steps in the absence of round-off errors. Finally, several numerical examples are tested to validate the performance of the proposed methods.

MSC:

90C25 Convex programming
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
Full Text: DOI

References:

[1] Chen, W., Wang, X., Zhong, T.: The structure of weighting coefficient matrices of Harmonic differential quadrature and its application. Commun. Numer. Methods Eng. 12, 455-460 (1996) · Zbl 0860.65012 · doi:10.1002/(SICI)1099-0887(199608)12:8<455::AID-CNM989>3.0.CO;2-M
[2] Zhou, B., Li, Z.Y.: Truncated predictor feedback for periodic linear systems with input delays with applications to the elliptical spacecraft rendezvous. IEEE Trans. Control Syst. Technol. 23(6), 2238-2250 (2015) · doi:10.1109/TCST.2015.2411228
[3] Datta, L., Morgera, S.: Some results on matrix symmetries and a pattern recognition application. IEEE Trans. Signal Process. 34, 992-994 (1986) · doi:10.1109/TASSP.1986.1164890
[4] Calvetti, D., Reichel, L.: Application of ADI iterative methods to the restoration of noisy images. SIAM J. Matrix Anal. Appl. 17, 165-186 (1996) · Zbl 0849.65101 · doi:10.1137/S0895479894273687
[5] Epton, M.: Methods for the solution of \[AXD-BXC=E\] AXD-BXC=E and its applications in the numerical solution of implicit ordinary differential equations. BIT 20, 341-345 (1980) · Zbl 0452.65015 · doi:10.1007/BF01932775
[6] Zhou, B., Duam, G.R., Lin, Z.: A parametric periodic Lyapunov equation with application in semi-global stabilization of discrete-time periodic systems subject to actuator saturation. Automatica 47, 316-325 (2011) · Zbl 1207.93061 · doi:10.1016/j.automatica.2010.10.011
[7] Longhi, S., Zulli, R.: A note on robust pole assignment for periodic systems. IEEE Trans. Autom. Control 41, 1493-1497 (1996) · Zbl 0860.93011 · doi:10.1109/9.539431
[8] Lv, L.L., Zhang, Z., Zhang, L., Wang, W.S.: An iterative algorithm for periodic Sylvester matrix equations. J. Ind. Manag. Optim. 13(2), 53-53 (2017)
[9] Lv, L.L., Zhang, L.: On the periodic Sylvester equations and their applications in periodic Luenberger observers design. J. Frankl. Inst. 353(5), 1005-1018 (2016) · Zbl 1336.93075 · doi:10.1016/j.jfranklin.2014.09.011
[10] Lv, L.L., Zhang, Z., Zhang, L.: A parametric poles assignment algorithm for second-order linear periodic systems. J. Frankl. Inst. 353(18), 8057-8071 (2017) · Zbl 1380.93124 · doi:10.1016/j.jfranklin.2017.09.029
[11] Lv, L.L., Zhang, Z., Zhang, L.: A periodic observers synthesis approach for LDP systems based on iteration. IEEE Access 6, 8539-8546 (2018) · doi:10.1109/ACCESS.2018.2802643
[12] Ding, F., Chen, T.W.: Gradient based iterative algorithms for solving a class of matrix equations. IEEE Trans. Autom. Control 50, 1216-1221 (2005) · Zbl 1365.65083 · doi:10.1109/TAC.2005.852558
[13] Ding, F., Chen, T.W.: Iterative least squares solutions of coupled Sylvester matrix equations. Syst. Control Lett. 54, 95-107 (2005) · Zbl 1129.65306 · doi:10.1016/j.sysconle.2004.06.008
[14] Bai, Z.Z.: On Hermitian and skew-Hermitian splitting iterative methods for continuous Sylvester equations. J. Comput. Math. 2, 185-198 (2011) · Zbl 1249.65090 · doi:10.4208/jcm.1009-m3152
[15] Sun, M., Liu, J.: The convergence rate of the proximal alternating direction method of multipliers with indefinite proximal regularization. J. Inequal. Appl. 2017, 19 (2017) · Zbl 1358.90100 · doi:10.1186/s13660-017-1295-1
[16] Sun, M., Wang, Y.J., Liu, J.: Generalized Peaceman-Rachford splitting method for multiple-block separable convex programming with applications to robust PCA. Calcolo 54(1), 77-94 (2017) · Zbl 1368.90129 · doi:10.1007/s10092-016-0177-0
[17] Ke, Y.F., Ma, C.F.: An alternating direction method for nonnegative solutions of the matrix equation \[AX+YB=C\] AX+YB=C. Comput. Appl. Math. 36(1), 359-365 (2017) · Zbl 1359.15007 · doi:10.1007/s40314-015-0232-5
[18] Ke, Y.F., Ma, C.F.: The unified frame of alternating direction method of multipliers for three classes of matrix equations arising in control theory. Asian J. Control 20(3), 1-18 (2018) · Zbl 1391.93093
[19] Niu, Q., Wang, X., Lu, L.Z.: A relaxed gradient based algorithm for solving Sylvester equations. Asian J. Control 13(3), 461-464 (2011) · Zbl 1242.65081 · doi:10.1002/asjc.328
[20] Wang, X., Dai, L., Liao, D.: A modified gradient based algorithm for solving Sylvester equations. Appl. Math. Comput. 218, 5620-5628 (2012) · Zbl 1250.65063
[21] Xie, Y.J., Ma, C.F.: The accelerated gradient based iterative algorithm for solving a class of generalized Sylvester-transpose matrix equation. Appl. Math. Comput. 273, 1257-1269 (2016) · Zbl 1410.65129
[22] Zhou, B., Li, Z.Y., Duan, G.R., Wang, Y.: Weighted least squares solutions to general coupled Sylvester matrix equations. J. Comput. Appl. Math. 224(2), 759-776 (2009) · Zbl 1161.65034 · doi:10.1016/j.cam.2008.06.014
[23] Huang, B.H., Ma, C.F.: On the least squares generalized Hamiltonian solution of generalized coupled Sylvester-conjugate matrix equations. Comput. Math. Appl. 74, 532-555 (2017) · Zbl 1390.15050 · doi:10.1016/j.camwa.2017.04.035
[24] Hu, J.J., Ma, C.F.: Minimum-norm Hamiltonian solutions of a class of generalized Sylvester- conjugate matrix equations. Comput. Math. Appl. 73(5), 747-764 (2017) · Zbl 1371.65039 · doi:10.1016/j.camwa.2016.12.029
[25] Lv, C.Q., Ma, C.F.: BCR method for solving generalized coupled Sylvester equations over centrosymmetric or anti-centrosymmetric matrix. Comput. Math. Appl. 75(1), 70-88 (2018) · Zbl 1478.65030 · doi:10.1016/j.camwa.2017.08.041
[26] Saad, Y., Vorst, H.: Iterative solution of linear systems in the 20th century. J. Comput. Appl. Math. 123(1-2), 1-33 (2000) · Zbl 0965.65051 · doi:10.1016/S0377-0427(00)00412-X
[27] Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003) · Zbl 1031.65046 · doi:10.1137/1.9780898718003
[28] Dehghan, M., Hajarian, M.: On the generalized reflexive and anti-reflexive solutions to a system of matrix equations. Linear Algebra Appl. 437(11), 2793-2812 (2012) · Zbl 1255.15019 · doi:10.1016/j.laa.2012.07.004
[29] Dehghan, M., Hajarian, M.: An iterative method for solving the generalized coupled Sylvester matrix equations over generalized bisymmetric matrices. Appl. Math. Model. 34, 639-654 (2010) · Zbl 1185.65054 · doi:10.1016/j.apm.2009.06.018
[30] Hajarian, M.: Solving the general Sylvester discrete-time periodic matrix equations via the gradient based iterative method. Appl. Math. Lett. 52, 87-95 (2016) · Zbl 1330.65065 · doi:10.1016/j.aml.2015.08.017
[31] Hajarian, M.: Matrix form of the CGS method for solving general coupled matrix equations. Appl. Math. Lett. 34, 37-42 (2014) · Zbl 1314.65064 · doi:10.1016/j.aml.2014.03.013
[32] Hajarian, M.: Matrix form of biconjugate residual algorithm to solve the discrete-time periodic Sylvester matrix equations. Asian J. Control 20(1), 1-9 (2018) · Zbl 1391.93090 · doi:10.1002/asjc.1528
[33] Huang, N., Ma, C.F.: The modified conjugate gradient methods for solving a class of generalized coupled Sylvester-transpose matrix equations. Comput. Math. Appl. 67(8), 1545-1558 (2014) · Zbl 1350.65036 · doi:10.1016/j.camwa.2014.02.003
[34] Zhang, H.M., Yin, H.C.: Conjugate gradient least squares algorithm for solving the generalized coupled Sylvester matrix equations. Comput. Math. Appl. 73(12), 2529-2547 (2017) · Zbl 1373.65033 · doi:10.1016/j.camwa.2017.03.018
[35] Sun, M., Liu, J.: Finite algorithm for the coupled generalized periodic Sylvester matrix equations, manuscript (2017)
[36] Vespucci, M.T., Broyden, C.G.: Implementation of different computational variations of biconjugate residual methods. Comput. Math. Appl. 42(8-9), 1239-1253 (2001) · Zbl 0983.65037 · doi:10.1016/S0898-1221(01)00236-X
[37] Lv, L.L., Zhang, Z.: Finite iterative solutions to periodic Sylvester matrix equations. J. Frankl. Inst. 354(5), 2358-2370 (2017) · Zbl 1398.93365 · doi:10.1016/j.jfranklin.2017.01.004
[38] Zhang, K.Y., Xu, Z.: Numerical Algebra. Science Press, Beijing (2006). (in Chinese)
[39] Peng, Y.X., Hu, X.Y., Zhang, L.: An iteration method for the symmetric solutions and the optimal approximation solution of the matrix equation \[AXB=C\] AXB=C. Appl. Math. Comput. 160, 763-777 (2005) · Zbl 1068.65056
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.