×

BCR method for solving generalized coupled Sylvester equations over centrosymmetric or anti-centrosymmetric matrix. (English) Zbl 1478.65030

Summary: This paper introduces another version of biconjugate residual method (BCR) for solving the generalized coupled Sylvester matrix equations over centrosymmetric or anti-centrosymmetric matrix. We prove this version of BCR algorithm can find the centrosymmetric solution group of the generalized coupled matrix equations for any initial matrix group within finite steps in the absence of round-off errors. Furthermore, a method is provided for choosing the initial matrices to obtain the least norm solution of the problem. At last, some numerical examples are provided to illustrate the efficiency and validity of methods we have proposed.

MSC:

65F45 Numerical methods for matrix equations
15A24 Matrix equations and identities
Full Text: DOI

References:

[1] Liu, J. Z.; Huang, Z. H.; Zhu, L.; Huang, Z. J., Theorems on Schur complement of block diagonally dominant matrices and their application in reducing the order for the solution of large scale linear systems, Linear Algebra Appl., 435, 12, 3085-3100 (2011) · Zbl 1231.15017
[2] Zhang, H. M.; Ding, F., A property of the eigenvalues of the symmetric positive definite matrix and the iterative algorithm for coupled Sylvester matrix equations, J. Franklin Inst., 351, 1, 340-357 (2014) · Zbl 1293.15006
[3] Zhang, H. M., Reduced-rank gradient-based algorithms for generalized coupled Sylvester matrix equations and its applications, Comput. Math. Appl., 70, 8, 2049-2062 (2015) · Zbl 1443.65059
[4] Zhang, H. M.; Ding, F., Iterative algorithms for \(X + A^T X^{- 1} A = I\) by using the hierarchical identification principle, J. Franklin Inst., 353, 5, 1132-1146 (2016) · Zbl 1336.93066
[5] Zhou, B.; Lam, J.; Duan, G. R., Convergence of gradient-based iterative solution of the coupled Markovian jump Lyapunov equations, Comput. Math. Appl., 56, 12, 3070-3078 (2008) · Zbl 1165.15304
[6] Wu, A. G.; Feng, G.; Duan, G. R.; Liu, W. Q., Iterative solutions to the Kalman-Yakubovich-conjugate matrix equation, Appl. Math. Comput., 217, 9, 4427-4438 (2011) · Zbl 1215.65086
[7] Wu, A. G.; Fu, Y. M.; Duan, G. R., On solutions of matrix equations \(V^T A V F = B W\) and \(V^T \overline{A} V F = B W\), Math. Comput. Modelling, 47, 11-12, 1181-1197 (2008) · Zbl 1145.15302
[8] Regalia, P. A.; Mitra, S. K., Kronecker products, unitary matrices and signal processing applications, SIAM Rev., 31, 586-613 (1989) · Zbl 0687.15010
[9] Rauhala, U. A., Introduction to array algebra, Photogramm. Eng. Remote Sens., 46, 177-192 (1980)
[10] Wang, Q. W., Bisymmetric and centrosymmetric solutions to systems of real quaternion matrix equations, Comput. Math. Appl., 49, 641-650 (2005) · Zbl 1138.15003
[11] Datta, L.; Morgera, S., On the reducibility of centrosymmetric matrices-applications in engineering problems, Circuits Systems Signal Process., 8, 71-96 (1989) · Zbl 0674.15005
[12] Weaver, J., Centrosymmetric (cross-symmetric) matrices, their basic properties, eigenvalues, and eigenvectors, Amer. Math. Monthly, 92, 711-717 (1985) · Zbl 0619.15021
[13] Bai, Z. J., The inverse eigenproblem of centrosymmetric matrices with a submatrix constraint and its approximation, SIAM J. Matrix Anal. Appl., 26, 1100-1114 (2005) · Zbl 1079.65043
[14] Andrew, A. L., Centrosymmetric matrices, SIAM Rev., 40, 697-698 (1998) · Zbl 0918.15006
[15] Delmas, J., On adaptive EVD asymptotic distribution of centro-symmetric covariance matrices, IEEE Trans. Signal Process., 47, 1402-1406 (1999)
[16] Wang, Q. W.; Chang, H. X.; Ning, Q., The common solution to six quaternion matrix equations with applications, Appl. Math. Comput., 198, 1, 209-226 (2008) · Zbl 1141.15016
[17] Wang, Q. W.; Woude, J. W.; Chang, H. X., A system of real quaternion matrix equations with applications, Linear Algebra Appl., 431, 12, 2291-2303 (2009) · Zbl 1180.15019
[18] Zhou, B.; Cai, G. B.; Lam, J., Positive definite solutions of the nonlinear matrix equation \(X + A \overline{H} X^{- 1} A = I\), Appl. Math. Comput., 219, 14, 7377-7391 (2013) · Zbl 1291.15044
[19] Zhou, B.; Lam, J.; Duan, G. R., Toward solution of matrix equation \(X = A f(X) B + C\), Linear Algebra Appl., 435, 6, 1370-1398 (2011) · Zbl 1278.15021
[20] Fausett, D. W.; Fulton, C. T., Large least squares problems involving Kronecker products, SIAM J. Matrix Anal. Appl., 15, 219-227 (1994) · Zbl 0798.65059
[21] Zha, H. Y., Comments on large least squares problems involving Kronecker products, SIAM J. Matrix Anal. Appl., 16 (1995), 1172-1172 · Zbl 0834.65029
[22] Tian, Z. L.; Tian, M. Y.; Liu, Z. Y.; Xu, T. Y., The Jacobi and GaussCSeidel-type iteration methods for the matrix equation \(A X B = C\), Appl. Math. Comput., 292, 63-75 (2017) · Zbl 1410.65126
[23] Ding, F.; Chen, T., Gradient based iterative algorithms for solving a class of matrix equations, IEEE Trans. Automat. Control, 50, 8, 1216-1221 (2005) · Zbl 1365.65083
[24] Ding, F.; Chen, T., On iterative solutions of general coupled matrix equations, SIAM J. Control Optim., 44, 6, 2269-2284 (2006) · Zbl 1115.65035
[25] Ding, F.; Chen, T., Iterative least squares solutions of coupled Sylvester matrix equations, Syst. Control Lett., 54, 2, 95-107 (2005) · Zbl 1129.65306
[26] Ding, F.; Liu, X. P.; Ding, J., Iterative solutions of the generalized Sylvester matrix equations by using the hierarchical identification principle, Appl. Math. Comput., 197, 1, 41-50 (2008) · Zbl 1143.65035
[27] Xie, L.; Ding, J.; Ding, F., Gradient based iterative solutions for general linear matrix equations, Comput. Math. Appl., 58, 7, 1441-1448 (2009) · Zbl 1189.65083
[28] Xie, L.; Liu, Y. J.; Yang, H. Z., Gradient based and least squares based iterative algorithms for matrix equations \(A X B + C X^T D = F\), Appl. Math. Comput., 217, 5, 2191-2199 (2010) · Zbl 1210.65097
[29] Peng, Y. X.; Hu, X. Y.; Zhang, L., An iteration method for the symmetric solutions and the optimal approximation solution of the matrix equation \(A X B = C\), Appl. Math. Comput., 160, 763-777 (2005) · Zbl 1068.65056
[30] Huang, G. X.; Yin, F.; Guo, K., An iterative method for the skew-symmetric solution and the optimal approximate solution of the matrix equation \(A X B = C\), J. Comput. Appl. Math., 212, 231-244 (2008) · Zbl 1146.65036
[31] Khorsand Zak, M.; Toutounian, F., Nested splitting conjugate gradient method for matrix equation AXB = C and preconditioning, Comput. Math. Appl., 66, 269-278 (2013) · Zbl 1347.65078
[32] Navarra, A.; Odell, P. L.; Young, D. M., A representation of the general common solution to the matrix equations \(A_1 X B_1 = C_1, A_2 X B_2 = C_2\) with applications, Comput. Math. Appl., 41, 929-935 (2001) · Zbl 0983.15016
[33] Piao, F.; Zhang, Q.; Wang, Z., The solution to matrix equation \(A X + X^T C = B\), J. Franklin Inst., 344, 1056-1062 (2007) · Zbl 1171.15015
[34] Ding, F.; Liu, P. X.; Ding, J., Iterative solutions of the generalized Sylvester matrix equations by using the hierarchical identification principle, Appl. Math. Comput., 197, 41-50 (2008) · Zbl 1143.65035
[35] Liang, K. F.; Liu, J. Z., Iterative algorithms for the minimum-norm solution and the least-squares solution of the linear matrix equations \(A_1 X B_1 + C_1 X T D_1 = M_1, A_2 X B_2 + C_2 X^T D_2 = M_2\), Appl. Math. Comput., 218, 3166-3175 (2011) · Zbl 1250.65059
[36] Dehghan, M.; Hajarian, M., Iterative algorithms for the generalized centro-symmetric and central anti-symmetric solutions of general coupled matrix equation, Eng. Comput., 29, 528-560 (2012)
[37] Xie, Y. J.; Huang, N.; Ma, C. F., Iterative method to solve the generalized coupled Sylvester-transpose linear matrix equations over reflexive or anti-reflexive matrix, Comput. Math. Appl., 67, 2071-2084 (2014) · Zbl 1362.65041
[38] Huang, N.; Ma, C. F., The modified conjugate gradient methods for solving a class of generalized coupled Sylvester-transpose matrix equations, Comput. Math. Appl., 67, 1545-1558 (2014) · Zbl 1350.65036
[39] Dehghan, M.; Hajarian, M., The general coupled matrix equations over generalized bisymmetric matrices, Linear Algebra Appl., 432, 1531-1552 (2010) · Zbl 1187.65042
[40] Dehghan, M.; Hajarian, M., An iterative method for solving the generalized coupled Sylvester matrix equations over generalized bisymmetric matrices, Appl. Math. Model., 34, 639-654 (2010) · Zbl 1185.65054
[41] Dehghan, M.; Hajarian, M., An iterative algorithm for the reflexive solutions of the generalized coupled Sylvester matrix equations and its optimal approximation, Appl. Math. Comput., 202, 2, 571-588 (2008) · Zbl 1154.65023
[42] Hajarian, M., Developing BiCOR and CORS methods for coupled Sylvester-transpose and periodic Sylvester matrix equations, Appl. Math. Model., 39, 6073-6084 (2015) · Zbl 1443.65055
[43] Hajarian, M., Matrix GPBiCG algorithms for solving the general coupled matrix equations, IET Control Theory Appl., 9, 74-81 (2015)
[44] Hajarian, M., Matrix iterative methods for solving the Sylvester-transpose and periodic Sylvester matrix equations, J. Franklin Inst., 350, 3328-3341 (2013) · Zbl 1293.93289
[45] Hajarian, M., Matrix form of the CGS method for solving general coupled matrix equations, Appl. Math. Lett., 34, 37-42 (2014) · Zbl 1314.65064
[46] Hajarian, M., The generalized QMRCGSTAB algorithm for solving Sylvester-transpose matrix equations, Appl. Math. Lett., 26, 1013-1017 (2013) · Zbl 1308.65062
[47] Hajarian, M., Symmetric solutions of the coupled generalized Sylvester matrix equations via BCR algorithm, J. Franklin Inst., 353, 3233-3248 (2016) · Zbl 1344.93044
[48] Hajarian, M., Convergence of HS version of BCR algorithmtosolve the generalized Sylvester matrix equation over generalized reflexive matrices, J. Franklin Inst., 354, 2340-2357 (2017) · Zbl 1398.93111
[49] Vespucci, M. T.; Broyden, C. G., Implementation of different computational variations of biconjugate residual methods, Comput. Math. Appl., 42, 1239-1253 (2001) · Zbl 0983.65037
[50] Zhang, K. Y., Iterative Algorithm for Constrained Solution of Matrix Equation (2015), National Defense Industry Press, (in chinese)
[51] Wang, Q. W.; Sun, J. H.; Li, S. Z., Consistency for bi(skew)symmetric solutions to systems of generalized Sylvester equations over a finite central algebra, Linear Algebra Appl., 353, 169-182 (2002) · Zbl 1004.15017
[52] Wang, Q. W.; Zhang, H. S.; Yu, S. W., On solutions to the quaternion matrix equation \(A X B + C Y D = E\), Electron. J. Linear Algebra, 17, 343-358 (2008) · Zbl 1154.15019
[53] Wang, Q. W.; Li, C. K., Ranks and the least-norm of the general solution to a system of quaternion matrix equations, Linear Algebra Appl., 430, 1626-1640 (2009) · Zbl 1158.15010
[54] Zhou, B.; Duan, G. R.; Li, Z. Y., Gradient based iterative algorithm for solving coupled matrix equations, Systems Control Lett., 58, 327-333 (2009) · Zbl 1159.93323
[55] Li, J. R.; White, J., Low-rank solution of Lyapunov equations, SIAM J. Matrix Anal. Appl., 24, 260-280 (2002) · Zbl 1016.65024
[56] Baksalary, J. K.; Kala, R., The matrix equation \(A X B + C Y D = E\), Linear Algebra Appl., 30, 141-147 (1980) · Zbl 0437.15005
[57] Ciarlet, P. G., Introduction to Numerical Linear Algebra and Optimisation (1989), Cambridge University Press: Cambridge University Press Cambridge
[58] Deng, Y. B.; Bai, Z. Z.; Gao, Y. H., Iterative orthogonal direction methods for Hermitian minimum norm solutions of two consistent matrix equations, Numer. Linear Algebra Appl., 13, 801-823 (2006) · Zbl 1174.65382
[59] Penzl, T., A cyclic low-rank smith method for large sparse Lyapunov equations, SIAM J. Sci. Comput., 21, 1401-1418 (2000) · Zbl 0958.65052
[60] Guo, K. H.; Hu, X. Y.; Zhang, L., A new iteration method for the matrix equation \(A X = B\), Appl. Math. Comput., 187, 1434-1441 (2007) · Zbl 1121.65043
[61] Karimi, S.; Toutounian, F., The block least squares method for solving nonsymmetric linear systems with multiple right-hand sides, Appl. Math. Comput., 177, 852-862 (2006) · Zbl 1096.65040
[62] Shinozaki, N.; Sibuya, M., Consistency of a pair of matrix equations with an application, Keio Eng. Rep., 27, 141-146 (1974) · Zbl 0409.15010
[63] Beik, F. P.A.; Salkuyeh, D. K., On the global Krylov subspace methods for solving general coupled matrix equations, Comput. Math. Appl., 62, 4605-4613 (2011) · Zbl 1236.15031
[64] Dehghan, M.; Hajarian, M., An iterative algorithm for the reflexive solutions of the generalized coupled Sylvester matrix equations and its optimal approximation, Appl. Math. Comput., 202, 571-588 (2008) · Zbl 1154.65023
[65] Dehghan, M.; Hajarian, M., Construction of an efficient iterative method for solving generalized coupled Sylvester matrix equations, Trans. Inst. Meas. Control, 35, 8, 961-970 (2013)
[66] Dehghan, M.; Hajarian, M., Solving coupled matrix equations over generalized bisymmetric matrices, Int. J. Control Autom. Syst., 10, 905-9012 (2012)
[67] Dehghan, M.; Hajarian, M., The generalized Sylvester matrix equations over the generalized bisymmetric and skew-symmetric matrices, Int. J. Syst. Sci., 43, 1580-1590 (2012) · Zbl 1308.65061
[68] Dehghan, M.; Hajarian, M., On the generalized reflexive and anti-reflexive solutions to a system of matrix equations, Linear Algebra Appl., 437, 2793-2812 (2012) · Zbl 1255.15019
[69] Dehghan, M.; Hajarian, M., Convergence of an iterative method for solving Sylvester matrix equations over reflexive matrices, J. Vib. Control, 17, 1295-1298 (2011) · Zbl 1271.65076
[70] Dehghan, M.; Hajarian, M., On the generalized bisymmetric and skew-symmetric solutions of the system of generalized Sylvester matrix equations, Linear Multilinear Algebra, 59, 1281-1309 (2011) · Zbl 1242.65075
[71] Dehghan, M.; Hajarian, M., The \((R, S)\)-symmetric and \((R, S)\)-skew symmetric solutions of the pair of matrix equations \(A_1 X B_1 = C_1\) and \(A_2 X B_2 = C_2\), Bull. Iranian Math. Soc., 37, 273-283 (2011) · Zbl 1260.15022
[72] Dehghan, M.; Hajarian, M., The generalized centro-symmetric and least squares generalized centro-symmetric solutions of the matrix equation \(A Y B + C Y^T D = E\), Math. Methods Appl. Sci., 34, 1562-1579 (2011) · Zbl 1228.65066
[73] Dehghan, M.; Hajarian, M., Results concerning interval linear systems with multiple right-hand sides and the interval matrix equation, J. Comput. Appl. Math., 235, 2969-2978 (2011) · Zbl 1221.65087
[74] Wang, M.; Cheng, X.; Wei, M., Iterative algorithms for solving the matrix equation \(A X B + C X^T D = E\), Appl. Math. Comput., 187, 622-629 (2007) · Zbl 1121.65048
[75] Wang, Q. W., A system of matrix equations and a linear matrix equation over arbitrary regular rings with identity, Linear Algebra Appl., 384, 43-54 (2004) · Zbl 1058.15015
[76] Peng, Y. X.; Hu, X. Y.; Zhang, L., An iterative method for symmetric solutions and optimal approximation solution of the system of matrix equations \(A_1 X B_1 = C_1, A_2 X B_2 = C_2\), Appl. Math. Comput., 183, 1127-1137 (2006) · Zbl 1134.65032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.