×

The modified conjugate gradient methods for solving a class of generalized coupled Sylvester-transpose matrix equations. (English) Zbl 1350.65036

Summary: In this paper, we consider the iteration solutions of generalized coupled Sylvester-transpose matrix equations: \(A_1XB_1+C_1Y^TD_1=F_1\), \(A_2YB_2+C_2X^TD_2=F_2\). When the coupled matrix equations are consistent, we propose a modified conjugate gradient method to solve the equations and prove that a solution \((X^\ast,Y^\ast)\) can be obtained within finite iterative steps in the absence of roundoff-error for any initial value. Furthermore, we show that the minimum-norm solution can be got by choosing a special kind of initial matrices. When the coupled matrix equations are inconsistent, we present another modified conjugate gradient method to find the least-squares solution with the minimum-norm. Finally, some numerical examples are given to show the behavior of the considered algorithms.

MSC:

65F30 Other matrix algorithms (MSC2010)
65F10 Iterative numerical methods for linear systems
15A24 Matrix equations and identities
Full Text: DOI

References:

[1] Andrew, A., Eigenvectors of certain matrices, Linear Algebra Appl., 7, 157-162 (1973) · Zbl 0255.65021
[2] Chen, W.; Wang, X.; Zhong, T., The structure of weighting coefficient matrices of Harmonic differential quadrature and its application, Commun. Numer. Methods. Eng., 12, 455-460 (1996) · Zbl 0860.65012
[3] Datta, L.; Morgera, S., Some results on matrix symmetries and a pattern recognition application, IEEE Trans. Signal Process., 34, 992-994 (1986)
[4] Weaver, J., Centrosymmetric (cross-symmetric) matrices, their basic properties, eigenvalues, and eigenvectors, Amer. Math. Monthly, 92, 711-717 (1985) · Zbl 0619.15021
[5] Datta, L.; Morgera, S., On the reducibility of centrosymmetric matrices-applications in engineering problems, Circuits Systems Signal Process., 8, 71-96 (1989) · Zbl 0674.15005
[6] Delmas, J., On adaptive EVD asymptotic distribution of centro-symmetric covariance matrices, IEEE Trans. Signal Process., 47, 1402-1406 (1999)
[7] Bai, Z. J., The inverse eigenproblem of centrosymmetric matrices with a submatrix constraint and its approximation, SIAM J. Matrix Anal. Appl., 26, 1100-1114 (2005) · Zbl 1079.65043
[8] Wang, Q. W., Bisymmetric and centrosymmetric solutions to systems of real quaternion matrix equations, Comput. Math. Appl., 49, 641-650 (2005) · Zbl 1138.15003
[9] Wang, Q. W.; Sun, J. H.; Li, S. Z., Consistency for bi(skew)symmetric solutions to systems of generalized Sylvester equations over a finite central algebra, Linear Algebra Appl., 353, 169-182 (2002) · Zbl 1004.15017
[10] Wang, Q. W.; Zhang, F., The reflexive re-nonnegative definite solution to a quaternion matrix equation, Electron. J. Linear Algebra, 17, 88-101 (2008) · Zbl 1147.15012
[11] Wang, Q. W.; Zhang, H. S.; Yu, S. W., On solutions to the quaternion matrix equation \(A X B + C Y D = E\), Electron. J. Linear Algebra, 17, 343-358 (2008) · Zbl 1154.15019
[12] Wang, Q. W.; Chang, H. X.; Ning, Q., The common solution to six quaternion matrix equations with applications, Appl. Math. Comput., 198, 209-226 (2008) · Zbl 1141.15016
[13] Wang, Q. W.; Li, C. K., Ranks and the least-norm of the general solution to a system of quaternion matrix equations, Linear Algebra Appl., 430, 1626-1640 (2009) · Zbl 1158.15010
[14] Zhou, B.; Duan, G. R.; Li, Z. Y., Gradient based iterative algorithm for solving coupled matrix equations, Systems Control Lett., 58, 327-333 (2009) · Zbl 1159.93323
[15] Baksalary, J. K.; Kala, R., The matrix equation \(A X B + C Y D = E\), Linear Algebra Appl., 30, 141-147 (1980) · Zbl 0437.15005
[16] Ciarlet, P. G., Introduction to Numerical Linear Algebra and Optimisation (1989), Cambridge University Press: Cambridge University Press Cambridge
[17] Deng, Y. B.; Bai, Z. Z.; Gao, Y. H., Iterative orthogonal direction methods for Hermitian minimum norm solutions of two consistent matrix equations, Numer. Linear Algebra Appl., 13, 801-823 (2006) · Zbl 1174.65382
[18] Ding, F.; Liu, P. X.; Ding, J., Iterative solutions of the generalized Sylvester matrix equations by using the hierarchical identification principle, Appl. Math. Comput., 197, 41-50 (2008) · Zbl 1143.65035
[19] Gu, C. Q.; Qian, H. J., Skew-symmetric methods for nonsymmetric linear systems with multiple right-hand sides, J. Comput. Appl. Math., 223, 567-577 (2009) · Zbl 1159.65036
[20] Hua, D., On the symmetric solutions of linear matrix equations, Linear Algebra Appl., 131, 1-7 (1990) · Zbl 0712.15009
[21] Jbilou, K., Smoothing iterative block methods for linear systems with multiple right-hand sides, J. Comput. Appl. Math., 107, 97-109 (1999) · Zbl 0929.65018
[22] Karimi, S.; Toutounian, F., The block least squares method for solving nonsymmetric linear systems with multiple right-hand sides, Appl. Math. Comput., 177, 852-862 (2006) · Zbl 1096.65040
[23] Moreau, J. J., Decomposition orthogonale d’un espace Hilbertien selon deux cônes mutuellement polaires, C. R. Acad. Sci. Paris, 225, 238-240 (1962) · Zbl 0109.08105
[24] Mitra, S. K., A pair of simultaneous linear matrix equations and a matrix programming problem, Linear Algebra Appl., 131, 97-123 (1990) · Zbl 0712.15010
[25] Song, C. Q.; Chen, G. L.; Zhao, L. L., Iterative solutions to coupled Sylvester-transpose matrix equations, Appl. Math. Model., 35, 4675-4683 (2011) · Zbl 1228.65071
[26] Shinozaki, N.; Sibuya, M., Consistency of a pair of matrix equations with an application, Keio Eng. Rep., 27, 141-146 (1974) · Zbl 0409.15010
[27] Trench, W. F., Inverse eigenproblems and associated approximation problems for matrices with generalized symmetry or skew symmetry, Linear Algebra Appl., 380, 199-211 (2004) · Zbl 1087.15013
[28] Trench, W. F., Characterization and properties of matrices with generalized symmetry or skew symmetry, Linear Algebra Appl., 377, 207-218 (2004) · Zbl 1046.15028
[29] Trench, W. F., Hermitian, Hermitian \(R\)-symmetric, and Hermitian \(R\)-skew symmetric Procrustes problems, Linear Algebra Appl., 387, 83-98 (2004) · Zbl 1121.15016
[30] Trench, W. F., Minimization problems for \((R, S)\)-symmetric and \((R, S)\)-skew symmetric matrices, Linear Algebra Appl., 389, 23-31 (2004) · Zbl 1059.15019
[31] Toutounian, F.; Karimi, S., Global least squares method (GL-LSQR) for solving general linear systems with several right-hand sides, Appl. Math. Comput., 178, 452-460 (2006) · Zbl 1100.65039
[32] Wierzbicki, A. P.; Kurcyusz, S., Projection on a cone, penalty functionals and duality theory for problems with inequality constraints in Hilbert space, SIAM J. Control Optim., 15, 25-56 (1977) · Zbl 0355.90045
[33] Xie, D. X.; Sheng, Y. P., The least-squares solutions of inconsistent matrix equation over symmetric and antipersymmetric matrices, Appl. Math. Lett., 16, 589-598 (2003) · Zbl 1047.65026
[34] Peng, Y. X.; Hu, X. Y.; Zhang, L., An iteration method for the symmetric solutions and the optimal approximation solution of the matrix equation \(A X B = C\), Appl. Math. Comput., 160, 763-777 (2005) · Zbl 1068.65056
[35] Huang, G. X.; Yin, F.; Guo, K., An iterative method for the skew-symmetric solution and the optimal approximate solution of the matrix equation \(A X B = C\), J. Comput. Appl. Math., 212, 231-244 (2008) · Zbl 1146.65036
[36] Guo, K. H.; Hu, X. Y.; Zhang, L., A new iteration method for the matrix equation \(A X = B\), Appl. Math. Comput., 187, 1434-1441 (2007) · Zbl 1121.65043
[37] Peng, Z. Y.; Wang, L.; Peng, J. J., The solution of matrix equation \(A X = B\) over a matrix inequality constraint, SIAM J. Matrix Anal. Appl., 33, 554-568 (2012) · Zbl 1252.65084
[38] Li, F. L.; Gong, L. S.; Hu, X. Y.; Zhang, L., Successive projection iterative method for solving matrix \(A X = B\), J. Comput. Appl. Math., 234, 2405-2410 (2010) · Zbl 1207.65044
[39] Li, J. F.; Peng, Z. Y.; Peng, J. J., The bisymmetric solution of matrix equation \(A X = B\) over a matrix inequality constraint, Math. Numer. Sin., 35, 137-150 (2013), (in Chinese) · Zbl 1299.65077
[40] Zhao, L. J.; Hu, X. Y.; Zhang, L., Least squares solutions to \(A X = B\) for bisymmetric matrices under a central principal submatrix constraint and the optimal approximation, Linear Algebra Appl., 428, 71-880 (2008) · Zbl 1133.15016
[41] Khorsand Zak, M.; Toutounian, F., Nested splitting conjugate gradient method for matrix equation \(A X B = C\) and preconditioning, Comput. Math. Appl., 66, 269-278 (2013) · Zbl 1347.65078
[42] Li, R. C., (Solving Secular Equations Stably and Efficiently, Technical Report. Solving Secular Equations Stably and Efficiently, Technical Report, LAPACK Working Note, vol. 89 (1993), Department of Mathematics, University of California: Department of Mathematics, University of California Berkeley, CA)
[43] Li, J. R.; White, J., Low-rank solution of Lyapunov equations, SIAM J. Matrix Anal. Appl., 24, 260-280 (2002) · Zbl 1016.65024
[44] Martinsson, P. G.; Rokhlin, V.; Tygert, M., A fast algorithm for the inversion of general Toeplitz matrices, Comput. Math. Appl., 50, 741-752 (2005) · Zbl 1087.65025
[45] Penzl, T., A cyclic low-rank smith method for large sparse Lyapunov equations, SIAM J. Sci. Comput., 21, 1401-1418 (2000) · Zbl 0958.65052
[46] Wachspress, E. L., Optimum alternating-direction-implicit iteration parameters for a model problem, J. Soc. Ind. Appl. Math., 10, 339-350 (1962) · Zbl 0111.31401
[49] Bai, Z. Z., On Hermitian and skew-Hermitian splitting iteration methods for continuous Sylvester equations, J. Comput. Math., 29, 185-198 (2011) · Zbl 1249.65090
[50] Khorsand Zak, M.; Toutounian, F., Nested splitting CG-like iterative method for solving the continuous Sylvester equation and preconditioning, Adv. Comput. Math. (2013) · Zbl 1295.15011
[51] Dehghan, M.; Hajarian, M., The generalised Sylvester matrix equations over the generalised bisymmetric and skew-symmetric matrices, Int. J. Syst. Sci., 43, 1580-1590 (2012) · Zbl 1308.65061
[52] Hajarian, M.; Dehghan, M., The generalized centro-symmetric and least squares generalized centro-symmetric solutions of the matrix equation \(A Y B + C Y T D = E\), Math. Methods Appl. Sci., 34, 1562-1579 (2011) · Zbl 1228.65066
[53] Dehghan, M.; Hajarian, M., Solving the generalized Sylvester matrix equation \(\sum_{i = 1}^p A_i X B_i + \sum_{j = 1}^q C_j Y D_j = E\) over reflexive and anti-reflexive matrices, Int. J. Control Autom. Syst., 9, 118-124 (2011)
[54] Dehghan, M.; Hajarian, M., Analysis of an iterative algorithm to solve the generalized coupled Sylvester matrix equations, Appl. Math. Model., 35, 3285-3300 (2011) · Zbl 1227.65037
[55] Dehghan, M.; Hajarian, M., An iterative method for solving the generalized coupled Sylvester matrix equations over generalized bisymmetric matrices, Appl. Math. Model., 34, 639-654 (2010) · Zbl 1185.65054
[56] Wang, Q. W., A system of matrix equations and a linear matrix equation over arbitrary regular rings with identity, Linear Algebra Appl., 384, 43-54 (2004) · Zbl 1058.15015
[57] Navarra, A.; Odell, P. L.; Young, D. M., A representation of the general common solution to the matrix equations \(A_1 X B_1 = C_1\) and \(A_2 X B_2 = C_2\) with applications, Comput. Math. Appl., 41, 929-935 (2001) · Zbl 0983.15016
[58] Mitra, S. K., A pair of simultaneous linear matrix equations \(A_1 X B_1 = C_1\) and \(A_2 X B_2 = C_2\), Proc. Cambridge Philos. Soc., 74, 213-216 (1973) · Zbl 0262.15010
[59] Peng, Y. X.; Hu, X. Y.; Zhang, L., An iterative method for symmetric solutions and optimal approximation solution of the system of matrix equations \(A_1 X B_1 = C_1, A_2 X B_2 = C_2\), Appl. Math. Comput., 183, 1127-1137 (2006) · Zbl 1134.65032
[60] Cai, J.; Chen, G. L., An iterative algorithm for the least squares bisymmetric solution of the matrix equations \(A_1 X B_1 = C_1, A_2 X B_2 = C_2\), Math. Comput. Modelling, 50, 1237-1244 (2009) · Zbl 1190.65061
[61] Liao, A. P.; Lei, Y., Least-squares solution with the minimum-norm for the matrix equation \((A X B, G X H) = (C, D)\), Comput. Math. Appl., 50, 539-549 (2005) · Zbl 1087.65040
[62] Beik, F. P.A.; Salkuyeh, D. K., The coupled Sylvester-transpose matrix equations over generalized centro-symmetric matrices, Int. J. Comput. Math., 90, 1546-1566 (2013) · Zbl 1280.65039
[63] Beik, F. P.A.; Salkuyeh, D. K., On the global Krylov subspace methods for solving general coupled matrix equations, Comput. Math. Appl., 62, 4605-4613 (2011) · Zbl 1236.15031
[64] Dehghan, M.; Hajarian, M., Construction of an iterative method for solving generalized coupled Sylvester matrix equations, Trans. Inst. Meas. Control, 35, 961-970 (2013)
[65] Dehghan, M.; Hajarian, M., Iterative algorithms for the generalized centro-symmetric and central anti-symmetric solutions of general coupled matrix equations, Eng. Comput., 29, 528-560 (2012)
[66] Dehghan, M.; Hajarian, M., Solving coupled matrix equations over generalized bisymmetric matrices, Int. J. Control Autom. Syst., 10, 905-912 (2012)
[67] Dehghan, M.; Hajarian, M., On the generalized reflexive and anti-reflexive solutions to a system of matrix equations, Linear Algebra Appl., 437, 2793-2812 (2012) · Zbl 1255.15019
[68] Dehghan, M.; Hajarian, M., Convergence of an iterative method for solving Sylvester matrix equations over reflexive matrices, J. Vib. Control, 17, 1295-1298 (2011) · Zbl 1271.65076
[69] Dehghan, M.; Hajarian, M., On the generalized bisymmetric and skew-symmetric solutions of the system of generalized Sylvester matrix equations, Linear Multilinear Algebra, 59, 1281-1309 (2011) · Zbl 1242.65075
[70] Dehghan, M.; Hajarian, M., The \((R, S)\)-symmetric and \((R, S)\)-skew symmetric solutions of the pair of matrix equations \(A_1 X B_1 = C_1\) and \(A_2 X B_2 = C_2\), Bull. Iranian Math. Soc., 37, 269-279 (2011) · Zbl 1260.15022
[71] Liang, K. F.; Liu, J. Z., Iterative algorithms for the minimum-norm solution and the least-squares solution of the linear matrix equations \(A_1 X B_1 + C_1 X^T D_1 = M_1, A_2 X B_2 + C_2 X^T D_2 = M_2\), Appl. Math. Comput., 218, 3166-3175 (2011) · Zbl 1250.65059
[72] Wang, M.; Cheng, X.; Wei, M., Iterative algorithms for solving the matrix equation \(A X B + C X^T D = E\), Appl. Math. Comput., 187, 622-629 (2007) · Zbl 1121.65048
[73] Horn, R. A.; Johnson, C. R., Topics in Matrix Analysis, 259-260 (1991), Cambridge University Press · Zbl 0729.15001
[74] Zhang, K. Y.; Xu, Z., Numerical Algebra (2006), Science Press: Science Press China, (in Chinese)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.