×

The relative trace formula in analytic number theory. (English) Zbl 1483.11101

Müller, Werner (ed.) et al., Relative trace formulas. Proceedings of the Simons symposium, Schloss Elmau, Germany, April 22–28, 2018. Cham: Springer. Simons Symp., 51-73 (2021).
This paper is a survey on asymptotic arithmetic estimates (bounds or true asymptotic) obtained by applying suitable group theoretical identities, in particular derived through relative trace formulæ and Kuznetsov-Bruggeman formula. There are many applications in analytic number theory and theory of automorphic forms. This survey is supplemented by about hundred bibliographical references.
The paper begins with the Poisson summation formula, interpreted as a trace formula: it induces original solutions for two problems: the Polya-Vinogradov inequality and the remainder bound for the number of lattice points in growing plane disks. These both asymptotically bounds are established in the Euclidean geometry framework while plane hyperbolic geometry, its spectral properties as well those of the modular surface \(\mathrm{SL}_2(\mathbb Z)\backslash \mathbb H^2\) (cusp forms, Hecke operators) are of special relevance to many of the problems quoted here. The formula (KB) established by N. V. Kuznetsov [Math. USSR, Sb. 39, 299–342 (1981); translation from Mat. Sb., N. Ser. 111(153), 334–383 (1980; Zbl 0427.10016)] and R. W. Bruggeman [Invent. Math. 45, 1–18 (1978; Zbl 0351.10019)] is crucial for many problems considered here. Although similar to the Selberg formula, as it relates certain spectral data to some integrals, it is quite different and worth to be quoted here. \[ \begin{split} 2\pi\sum_{\varphi\in\mathcal B} \frac{\lambda_\varphi(n)\lambda_\varphi(m)}{L(1,\mathrm{Ad}^2\varphi)} h(t_\varphi(n))+ \int_{\mathbb R} \frac{\sigma_{\mathrm{i}t}(n)\sigma_{\mathrm{i}t}(m)} {|\zeta(1+2\mathrm{i}t)|^2}h(t)\mathrm{d}t\\ =\delta_{m,n} \int_{\mathbb R}h(t)\tanh(\pi t)t\mathrm{d}t +\sum_c\frac 1cS(n,m,c)\widehat h_{\pm}\left(\frac{nm}{c^2}\right)\tag{KB} \end{split} \] Here, \(m,n\) are non zero integers, \(h\) is a sufficiently nice test function with \(\widehat h_\pm\) a certain integral transform of \(h\) given by a Bessel kernel depending on the sign \(\pm=\mathrm{sgn}(nm)\), \(\mathcal B\) is an orthonormal basis of joint cuspidal eigenfunctions, \(\sigma_{\mathrm{i}t}(n)=\sum_{ad=|n|}(a/d)^{\mathrm{i}t}\) is the Hecke eigenvalue of the corresponding Eisenstein series \[ S(n,m,c)=\sum_{\substack{d\pmod{c}\\ (d,c)=1}}\exp \left(\frac{2\mathrm{i}\pi(nd+m\overline{d})}c\right) \] Moreover, for a cuspidal form \(\varphi\), the \(\lambda_\varphi(n),n\in\mathbb Z\) are the Fourier coefficients in the expansion \[ \varphi(x+\mathrm{i}y)=\varphi_0+\sum_{n\not=0} \frac{\lambda_\varphi(n)}{\sqrt{|n|}} {\exp(2\mathrm{i}\pi nx)} W_{\mathrm{i}t_\varphi(n)}(4\pi |n|y), \] where \(W_\tau(y)\) is the standard Whittaker function and \(\lambda_\varphi=t_\varphi^2+1/4\). For the proof, see also H. Iwaniec and E. Kowalski [Analytic number theory. Providence, RI: American Mathematical Society (AMS) (2004; Zbl 1059.11001), p. 360, Prop. 14.5] for a similar formula on holomorphic cusp forms.
Let us sketch the problems listed by the author, with a short discussion for each one.
Statistics of eigenvalues: vertical Sato-Tate laws, density results for Maaß forms violating the Ramanujan conjecture, large sieve estimates.
Arithmetic applications (Kloosterman sums, primes and arithmetic functions): Linnik’ problem (cancellation in sums of Kloosterman sums), shifted convolution sums, primes in long arithmetic progressions, the first case of Fermat’s last theorem, proportion of zeta zeros on the critical line, the largest prime factor of \(n^2+1\), equidistribution of roots of quadratic congruences, prime geodesic theorem.
Applications to \(L\)-functions: symmetric type of \(L\)-functions; spectral expansion of the fourth moment of the Riemann zeta function, beyond endoscopy, non-vanishing of \(L\)-function.
Applications to \(L\)-functions with subconvexity and equidistribution: sums of three squares, equidistribution of Heegner points, Maaß distribution problems.
The paper ends with some hints for groups bigger than \(\mathrm{SL}(2)\): \(\mathrm{GL}(3)\), \(\mathrm{GSP}(4)\) and groups of unbounded rank.
For the entire collection see [Zbl 1469.11002].

MSC:

11F72 Spectral theory; trace formulas (e.g., that of Selberg)
11F03 Modular and automorphic functions
11F30 Fourier coefficients of automorphic forms
11F66 Langlands \(L\)-functions; one variable Dirichlet series and functional equations

References:

[1] R. Langlands, Beyond endoscopy, in Contributions to Automorphic Forms, Geometry and Number Theory, pp. 611-697 (Johns Hopkins University Press, Baltimore, 2004) · Zbl 1078.11033
[2] A. Ivić, The Riemann Zeta-Function: Theory and Applications. Reprint of the 1985 original (Dover Publications, New York, 2003) · Zbl 1034.11046
[3] J.-P. Serre, Répartition asymptotique des valeurs propres de l’operateur de Hecke \(T_{}\) p. J. Amer. Math. Soc. 10, 75-102 (1997) · Zbl 0871.11032 · doi:10.1090/S0894-0347-97-00220-8
[4] X. Li, Bounds for GL(3) ×GL(2) L-functions and GL(3) L-functions. Ann. Math. 173, 301-336 (2011) · Zbl 1320.11046 · doi:10.4007/annals.2011.173.1.8
[5] E. Bombieri, J. Friedlander, H. Iwaniec, Primes in arithmetic progressions to large moduli. Acta Math. 156, 203-251 (1986) · Zbl 0588.10042 · doi:10.1007/BF02399204
[6] V. Blomer, J. Buttcane, P. Maga, Applications of the Kuznetsov formula on GL(3): the level aspect. Math. Ann. 369, 723-759 (2017) · Zbl 1400.11104 · doi:10.1007/s00208-017-1558-7
[7] V. Blomer, J. Buttcane, N. Raulf, A Sato-Tate law for GL(3). Comm. Math. Helv. 89, 895-919 (2014) · Zbl 1317.11053 · doi:10.4171/CMH/337
[8] V. Blomer, R. Khan, M. Young, Distribution of mass of holomorphic cusp forms. Duke Math. J. 162, 2609-2644 (2013) · Zbl 1312.11028 · doi:10.1215/00127094-2380967
[9] V. Blomer, Spectral summation formula for GSp(4) and moments of spinor L-functions. J. Eur. Math. Soc. 21, 1751-1774 (2019) · Zbl 1443.11064 · doi:10.4171/JEMS/872
[10] L. Adleman, D.R. Heath-Brown, The first case of Fermat’s last theorem. Invent. Math. 79, 409-416 (1985) · Zbl 0557.10034 · doi:10.1007/BF01388981
[11] S.A. Altuğ, Beyond endoscopy via the trace formula, II: asymptotic expansions of Fourier transforms and bounds towards the Ramanujan conjecture. Am. J. Math. 139, 863-913 (2017) · Zbl 1436.11056
[12] T. Barnet-Lamb, D. Geraghty, M. Harris, R. Taylor, A family of Calabi-Yau varieties and potential automorphy II. Publ. Res. Inst. Math. Sci. 47, 29-98 (2011) · Zbl 1264.11044 · doi:10.2977/PRIMS/31
[13] M. Berry, Regular and irregular semiclassical wavefunctions. J. Phys. A 10, 2083-2091 (1977) · Zbl 0377.70014 · doi:10.1088/0305-4470/10/12/016
[14] V. Blomer, Ternary quadratic forms and sums of three squares with restricted variables, in The Anatomy of Integers, ed. by J.-M. de Koninck, A. Granville, F. Luca, CRM Proceedings & Lecture Notes, vol. 46 (2008), pp. 1-17 · Zbl 1186.11023
[15] V. Blomer, Subconvexity for twisted L-functions onGL(3). Am. J. Math. 134, 1385-1421 (2012) · Zbl 1297.11046 · doi:10.1353/ajm.2012.0032
[16] V. Blomer, On the 4-norm of an automorphic form. J. Eur. Math. Soc. 15, 1825-1852 (2013) · Zbl 1368.11040 · doi:10.4171/JEMS/405
[17] V. Blomer, Applications of the Kuznetsov formula on GL(3). Invent. Math. 194, 673-729 (2013) · Zbl 1292.11064 · doi:10.1007/s00222-013-0454-3
[18] V. Blomer, Density theorems for GL(n) (2019). arxiv:1906.07459 · Zbl 1443.11064
[19] V. Blomer, J. Buttcane, Global decomposition of GL(3) Kloosterman sums and the spectral large sieve. J. Reine Angew. Math. 757, 51-88 (2019) · Zbl 1468.11166 · doi:10.1515/crelle-2017-0034
[20] V. Blomer, J. Buttcane, On the subconvexity problem for L-functions on GL(3). Ann. Sci. Ecole Norm. Sup. 53, 1441-1500 (2020) · Zbl 1484.11124 · doi:10.24033/asens.2451
[21] V. Blomer, G. Harcos, P. Michel, Bounds for modular L-functions in the level aspect. Ann. Sci. Ecole Norm. Sup. 40, 697-740 (2007) · Zbl 1185.11034 · doi:10.1016/j.ansens.2007.05.003
[22] V. Blomer, G. Harcos, Twisted L-functions over number fields and Hilbert’s eleventh problem. Geom. Funct. Anal. 20, 1-52 (2010) · Zbl 1221.11121 · doi:10.1007/s00039-010-0063-x
[23] V. Blomer, X. Li, S. Miller, A spectral reciprocity formula and non-vanishing of L-functions on GL(4) ×GL(2). J. Number Theory Prime 205, 1-43 (2019) · Zbl 1506.11078 · doi:10.1016/j.jnt.2019.05.011
[24] S. Böcherer, Bemerkungen über die Dirichletreihen von Koecher und Maaß. Math. Gottingensis 68 (1986) · Zbl 0593.10025
[25] R. Bruggeman, Fourier coefficients of cusp forms. Invent. Math. 45, 1-18 (1978) · Zbl 0351.10019 · doi:10.1007/BF01406220
[26] D. Bump, S. Friedberg, D. Goldfeld, Poincaré series and Kloosterman sums for \(\text{SL}(3,\mathbb{Z})\). Acta Arith. 50, 31-89 (1988) · Zbl 0647.10020
[27] J. Buttcane, The spectral Kuznetsov formula on SL(3). Trans. AMS 368, 6683-6714 (2016) · Zbl 1354.11032 · doi:10.1090/tran/6833
[28] J. Buttcane, The arithmetic Kuznetsov formula on GL(3), I: the Whittaker case. Rev. Mat. Iberoamericana. To appear · Zbl 1478.11102
[29] J. Buttcane, The arithmetic Kuznetsov formula on GL(3), II: the general case (2019). arxiv:1909.09232 · Zbl 1478.11102
[30] V. Buttcane, R. Khan, \(L^4\)-norms of Hecke newforms of large level. Math. Ann. 362, 699-715 (2015) · Zbl 1336.11032 · doi:10.1007/s00208-014-1142-3
[31] J. Buttcane, R. Khan, On the fourth moment of Hecke-Maass forms and the random wave conjecture. Compos. Math. 153, 1479-1511 (2017) · Zbl 1398.11072 · doi:10.1112/S0010437X17007199
[32] J. Buttcane, F. Zhou, Plancherel distribution of Satake parameters of Maass cusp forms on \(GL_3\). IMRN (5), 1417-1444 (2020) · Zbl 1437.11079 · doi:10.1093/imrn/rny061
[33] P. Cohen, Hyperbolic equidistribution problems on Siegel 3-folds and Hilbert modular varieties. Duke Math. J. 129, 87-127 (2005) · Zbl 1155.11326 · doi:10.1215/S0012-7094-04-12914-8
[34] H. Cohen, Number Theory Volum II: Analytic and Modern Tools. Graduate Texts in Mathematics, vol. 240 (Springer, Berlin, 2007) · Zbl 1119.11002
[35] B. Conrey, More than two fifths of the zeros of the Riemann zeta function are on the critical line. J. Reine Angew. Math. 399, 1-26 (1989) · Zbl 0668.10044
[36] B. Conrey, H. Iwaniec, The cubic moment of central values of automorphic L-functions. Ann. Math. 151, 1175-1216 (2000) · Zbl 0973.11056 · doi:10.2307/121132
[37] J.-M. Deshouillers, H. Iwaniec, Kloosterman sums and Fourier coefficients of cusp forms. Invent. Math. 70, 219-288 (1982) · Zbl 0502.10021 · doi:10.1007/BF01390728
[38] J.-M. Deshouillers, H. Iwaniec, On the greatest prime factor of \(n^2 + 1\). Ann. Inst. Fourier (Grenoble) 32, 1-11 (1982) · Zbl 0489.10038 · doi:10.5802/aif.891
[39] W. Duke, Hyperbolic distribution problems and half-integral weight Maass forms. Invent. Math. 92, 73-90 (1988) · Zbl 0628.10029 · doi:10.1007/BF01393993
[40] W. Duke, R. Schulze-Pillot, Representation of integers by positive ternary quadratic forms and equidistribution of lattice points on ellipsoids. Invent. Math. 99, 49-57 (1990) · Zbl 0692.10020 · doi:10.1007/BF01234411
[41] W. Duke, J. Friedlander, H. Iwaniec, Equidistribution of roots of a quadratic congruence to prime moduli. Ann. Math. 141, 423-441 (1995) · Zbl 0840.11003 · doi:10.2307/2118527
[42] M. Einsiedler, E. Lindenstrauss, P. Michel, A. Venkatesh, Distribution of periodic torus orbits and Duke’s theorem for cubic fields. Ann. Math. 173, 815-885 (2011) · Zbl 1248.37009 · doi:10.4007/annals.2011.173.2.5
[43] T. Finis, J. Matz, On the asymptotics of Hecke operators for reductive groups. arxiv:1905.09078
[44] E. Fouvry, Théorème de Brun-Titchmarsh: application au théorème de Fermat. Invent. Math. 79, 383-407 (1985) · Zbl 0557.10035 · doi:10.1007/BF01388980
[45] S. Friedberg, Poincaré series for GL(n): Fourier expansion, Kloosterman sums, and algebreo-geometric estimates. Math. Z. 196, 165-188 (1987) · Zbl 0612.10020 · doi:10.1007/BF01163653
[46] J. Friedlander, Bounds for L-functions, in Proceedings of the International Congress of Mathematicians, ICM ’94(Birkhäuser, Basel, 1995), pp. 363-373 · Zbl 0843.11040
[47] M. Furusawa, K. Morimoto, Refined global Gross-Prasad conjecture on special Bessel periods and Böcherer’s conjecture. J. EMS. To appear. (2021) · Zbl 1486.11072
[48] D. Goldfeld, Automorphic forms andL-functions for the group \(\text{GL}(n, \mathbb{R})\). Cambridge Studies in Advanced Mathematics, vol. 99 (2006) · Zbl 1108.11039
[49] D. Goldfeld, E. Stade, M. Woodbury, An orthogonality relation for \(\text{GL}(4, \mathbb{R}) (2019)\). arxiv:1910.13586 · Zbl 1478.11078
[50] I.S. Gradshteyn, I.M. Ryzhik, Tables of Integrals, Series, and Products, 7th edn. (Academic Press, New York, 2007) · Zbl 1208.65001
[51] G. Harcos, P. Michel, The subconvexity problem for Rankin-Selberg L-functions and equidistribution of Heegner points. II. Invent. Math. 163, 581-655 (2006) · Zbl 1111.11027 · doi:10.1007/s00222-005-0468-6
[52] P. Humphries, Equidistribution in shrinking sets and \(L^4\)-norm bounds for automorphic forms. Math. Ann. 371, 1497-1543 (2018) · Zbl 1448.11084 · doi:10.1007/s00208-018-1677-9
[53] P. Humphries, M. Radziwiłł, Optimal small scale equidistribution of lattice points on the sphere, Heegner points, an closed geodesics. arxiv:1910.01360
[54] A. Ichino, Trilinear forms and the central values of triple product L-functions. Duke Math. J. 145, 281-307 (2008) · Zbl 1222.11065 · doi:10.1215/00127094-2008-052
[55] A. Ichino, T. Ikeda, On the periods of automorphic forms on special orthogonal groups and the Gross-Prasad conjecture. Geom. Funct. Anal. 19, 1378-1425 (2010) · Zbl 1216.11057 · doi:10.1007/s00039-009-0040-4
[56] H. Iwaniec, Fourier coefficients of modular forms of half-integral weight. Invent. Math. 87, 385-401 (1987) · Zbl 0606.10017 · doi:10.1007/BF01389423
[57] H. Iwaniec, E. Kowalski, Analytic Number Theory. AMS Colloquium Publications, vol. 53 (American Mathematical Society, Providence, 2004) · Zbl 1059.11001
[58] I. Iwaniec, W. Luo, P. Sarnak, Low lying zeros of families of L-functions. Inst. Hautes Études Sci. Publ. Math. 91, 55-131 (2000) · Zbl 1012.11041 · doi:10.1007/BF02698741
[59] D. Joyner, On the Kuznetsov-Bruggeman formula for a Hilbert modular surface having one cusp. Math. Z. 203, 59-104 (1990) · Zbl 0701.11020 · doi:10.1007/BF02570723
[60] M. Jutila, Y. Motohashi, Uniform bound for Hecke L-functions. Acta Math. 195, 61-115 (2005) · Zbl 1098.11034 · doi:10.1007/BF02588051
[61] N. Katz, P. Sarnak. Random Matrices, Frobenius eigenvalues, and Monodromy. AMS Colloquium Publications, Providence, vol. 45 (1999) · Zbl 0958.11004
[62] Y. Kitaoka, Fourier coefficients of Siegel cusp forms of degree 2. Nagoya Math. J. 93, 149-171 (1984) · Zbl 0531.10031 · doi:10.1017/S0027763000020778
[63] H.D. Kloosterman, On the representation of numbers in the form \(ax^2 + by^2 + cz^2 + dt^2\). Acta Math. 49, 407-464 (1926) · JFM 53.0155.01 · doi:10.1007/BF02564120
[64] A. Knightly, C. Li, On the distribution of Satake parameters for Siegel modular forms. Doc. Math. 24, 677-747 (2019) · Zbl 1470.11109
[65] E. Kowalski, Un cours de théorie analytique des nombres. Cours Spécialisés. Société mathématique de France, vol. 13 (2004) · Zbl 1071.11001
[66] E. Kowalski, A. Saha, J. Tsimerman, Local spectral equidistribution for Siegel modular forms and applications. Compos. Math. 148, 335-384 (2012) · Zbl 1311.11037 · doi:10.1112/S0010437X11007391
[67] N.V. Kuznetsov, The Petersson conjecture for cusp forms of weight zero and the Linnik conjecture. Sums of Kloosterman sums. Math. USSR-Sb 39, 299-342 (1981) · Zbl 0461.10017 · doi:10.1070/SM1981v039n03ABEH001518
[68] X. Li, M. Young, The \(L^2\) restriction norm of a \(GL_3\) Maass form. Compos. Math. 148, 675-717 (2012) · Zbl 1287.11066 · doi:10.1112/S0010437X11007366
[69] X. Li, S.-C. Liu, M. Young, The \(L^2\) restriction norm of a Maass form on \(\text{SL}_{n+1}(\mathbb{Z})\). Math. Ann. 371, 1301-1335 (2018) · Zbl 1418.11078
[70] S.-C. Liu, R. Masri, M. Young, Subconvexity and equidistribution of Heegner points in the level aspect. Compos. Math. 149, 1150-1174 (2013) · Zbl 1329.11046 · doi:10.1112/S0010437X13007033
[71] W. Luo, Nonvanishing of L-values and the Weyl law. Ann. Math. 154, 477-502 (2001) · Zbl 1003.11019 · doi:10.2307/3062104
[72] W. Luo, P. Sarnak, Quantum ergodicity of Eigenfunctions on \(\text{PSL}_2(\mathbb{Z})\backslash \mathbb{H}_2\). Inst. Hautes Études Sci. Publ. Math. 81, 207-237 (1995) · Zbl 0852.11024
[73] J. Matz, N. Templier, Sato-Tate equidistribution for families of Hecke-Maass forms on \(\text{SL}(n,\mathbb{R})/\text{SO}(n)\). arxiv:1505.07285
[74] J. Merikoski, Largest prime factor of \(n^2 + 1\). arxiv:1908.08816
[75] T. Meurman, On the Binary Additive Divisor Problem. Number Theory (Turku, 1999) (de Gruyter, Berlin, 2001), pp. 223-246 · Zbl 0967.11039
[76] P. Michel, A. Venkatesh, Equidistribution, L-functions and Ergodic theory: on some problems of Yu. Linnik, in Proceedings ICM Zürich(2006), pp. 421-457 · Zbl 1157.11019
[77] Y. Motohashi, Spectral Theory of the Riemann Zeta-Function. Cambridge Tracts in Mathematics, Cambridge, vol. 127 (1997) · Zbl 0878.11001
[78] R. Philipps, P. Sarnak, On cusp forms for co-finite subgroups of \(\text{PSL}(2, \mathbb{R})\). Invent. Math. 80, 339-364 (1985) · Zbl 0558.10017
[79] G. Pólya, Über die Verteilung der quadratischen Reste und Nichtreste. Gött. Nachr. 21-29 (1918) · JFM 46.0265.02
[80] Z. Rudnick, P. Sarnak, The behavior of eigenstates of arithmetic hyperbolic manifolds. Comm. Math. Phys. 161, 195-213 (1994) · Zbl 0836.58043 · doi:10.1007/BF02099418
[81] P. Sarnak, Statistical properties of eigenvalues of the Hecke operators, in Analytic Number Theory and Diophantine Problems (Stillwater, 1984). Progress in Mathematics, vol. 70 (Birkhäuser, Boston, 1987), pp. 321-331 · Zbl 0628.10028
[82] P. Sarnak, Estimates for Rankin-Selberg L-functions and quantum unique ergodicity. J. Funct. Anal. 184, 419-453 (2001) · Zbl 1006.11022 · doi:10.1006/jfan.2001.3783
[83] P. Sarnak, Letter to Reznikov. https://publications.ias.edu/node/498
[84] G. Stevens, Poincaré series on GL(r) and Kloostermann sums. Math. Ann. 277, 25-51 (1987) · Zbl 0597.12017 · doi:10.1007/BF01457276
[85] A. Strömbergsson, Some remarks on a spectral correspondence for maass waveforms. Int. Math. Res. Not. 2001(10), 505-517 · Zbl 1020.11035 · doi:10.1155/S1073792801000265
[86] K. Soundararajan, M. Young, The prime geodesic theorem. J. Reine Angew. Math. 676, 105-120 (2013) · Zbl 1276.11084
[87] E. Suvitie, On a short spectral sum involving inner products of a holomorphic cusp form and Maass forms. Acta Arith. 144, 395-418 (2010) · Zbl 1228.11068 · doi:10.4064/aa144-4-5
[88] W. Szerpiński, Über ein Problem aus der analytischen Zahlentheorie. Prace mat.-fiz. 17, 77-118 (1906) · JFM 37.0236.02
[89] A. Toth, Roots of quadratic congruences. Int. Math. Res. Not. 719-739 (2000) · Zbl 1134.11339
[90] A. Venkatesh, Beyond endoscopy and special forms on GL(2). J. Reine Angew. Math. 577, 23-80 (2004) · Zbl 1061.22019
[91] I.M. Vinogradov, Über eine asymptotische Formel aus der Theorie der binären quadratischen Formen. J. Soc. Phys. Math. Permĭ 1, 18-28 (1918) · JFM 48.1352.04
[92] F. Waibel, Moments of spinor L-functions and symplectic Kloosterman sums. Quart. J. Math. 70, 1411-1436 (2019) · Zbl 1465.11127
[93] A. Weil, On some exponential sums. Proc. Nat. Acad. Sci. U. S. A. 34, 204-207 (1948) · Zbl 0032.26102 · doi:10.1073/pnas.34.5.204
[94] Y. Ye, A Kuznetsov Formula for Kloosterman Sums on \(GL_{}\) n. Ramanujan J. 4, 385-395 (2000) · Zbl 1004.11047 · doi:10.1023/A:1009863932342
[95] M. Young, Low-lying zeros of families of elliptic curves. J. Amer. Math. Soc. 19, 205-250 (2006) · Zbl 1086.11032 · doi:10.1090/S0894-0347-05-00503-5
[96] M. Young, The quantum unique ergodicity conjecture for thin sets. Adv. Math. 286, 958-1016 (2016) · Zbl 1326.81281 · doi:10.1016/j.aim.2015.09.013
[97] M. Young, Weyl-type hybrid subconvexity bounds for twisted L-functions and Heegner points on shrinking sets. J. Eur. Math. Soc. 17, 1545-1576 (2017) · Zbl 1430.11067 · doi:10.4171/JEMS/699
[98] S.-W. Zhang, Equidistribution of CM-points on quaternion Shimura varieties. Int. Math. Res. Not · Zbl 1096.14016
[99] D. Sears, E. Titchmarsh, Some Eigenfunction formulae. Quart. J. Math. 1, 165-175 (1950) · Zbl 0039.10201 · doi:10.1093/qmath/1.1.165
[100] Y. Petridis, P. Sarnak, Quantum unique ergodicity for \(\text{SL}_2(\mathcal{O})\backslash \mathbb{H}_3\) and estimates for L-functions. J. Evol. Equ. 1, 277-290 (2001) · Zbl 0995.11036
[101] P. Michel, The subconvexity problem for Rankin-Selberg L-functions and equidistribution of Heegner points. Ann. Math. 160, 185-236 (2004) · Zbl 1068.11033 · doi:10.4007/annals.2004.160.185
[102] D. Goldfeld, A. Kontorovich, On the GL(3) Kuznetsov formula with applications to symmetry types of families of L-functions, in Automorphic Representations and L-Functions. Tata Institute of Fundamental Research Studies in Mathematics, vol. 22 (2013), pp. 263-310 · Zbl 1344.11041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.