×

Equidistribution in shrinking sets and \(L^4\)-norm bounds for automorphic forms. (English) Zbl 1448.11084

Summary: We study two closely related problems stemming from the random wave conjecture for Maaß forms. The first problem is bounding the \(L^4\)-norm of a Maaß form in the large eigenvalue limit; we complete the work of Spinu to show that the \(L^4\)-norm of an Eisenstein series \(E(z,1/2+it_g)\) restricted to compact sets is bounded by \(\sqrt{\log t_g}\). The second problem is quantum unique ergodicity in shrinking sets; we show that by averaging over the centre of hyperbolic balls in \(\Gamma \setminus \mathbb {H}\), quantum unique ergodicity holds for almost every shrinking ball whose radius is larger than the Planck scale. This result is conditional on the generalised Lindelöf hypothesis for Hecke-Maaß eigenforms but is unconditional for Eisenstein series. We also show that equidistribution for Hecke-Maaß eigenforms need not hold at or below the Planck scale. Finally, we prove similar equidistribution results in shrinking sets for Heegner points and closed geodesics associated to ideal classes of quadratic fields.

MSC:

11F12 Automorphic forms, one variable
58J51 Relations between spectral theory and ergodic theory, e.g., quantum unique ergodicity

References:

[1] Berry, MV, Regular and irregular semiclassical wavefunctions, J. Phys. A: Math. Gen., 10, 2083-2091, (1977) · Zbl 0377.70014 · doi:10.1088/0305-4470/10/12/016
[2] Blomer, V; Milićević, D, The second moment of twisted modular \(L\)-functions, Geom. Funct. Anal., 25, 453-516, (2015) · Zbl 1400.11097 · doi:10.1007/s00039-015-0318-7
[3] Bourgain, J, Decoupling, exponential sums and the Riemann zeta function, J. Am. Math. Soc., 30, 205-224, (2017) · Zbl 1352.11065 · doi:10.1090/jams/860
[4] Bourgain, J., Rudnick, Z., Sarnak, P.: Spatial Statistics for Lattice Points on the Sphere I: Individual Results. Bull. Iran. Math. Soc. 43(4), 361-38 (2017). http://bims.iranjournals.ir/article_1169.html · Zbl 1464.11076
[5] Buttcane, J; Khan, R, A mean value of triple product \(L\)-functions, Math. Z., 285, 565-591, (2017) · Zbl 1427.11043 · doi:10.1007/s00209-016-1721-y
[6] Buttcane, J; Khan, R, On the fourth moment of Hecke Maass forms and the random wave conjecture, Compos. Math., 153, 1479-1511, (2017) · Zbl 1398.11072 · doi:10.1112/S0010437X17007199
[7] Chamizo, F, Some applications of large sieve in Riemann surfaces, Acta Arith., 77, 315-337, (1996) · Zbl 0863.11062 · doi:10.4064/aa-77-4-315-337
[8] Chelluri, T.: Equidistribution of the Roots of Quadratic Congruences, Ph.D. Thesis, Rutgers The State University of New Jersey, New Brunswick, (2004) · Zbl 1326.81281
[9] Djanković, G; Khan, R, A conjecture for the regularized fourth moment of Eisenstein series, J. Num. Theory, 182, 236-257, (2018) · Zbl 1423.11081 · doi:10.1016/j.jnt.2017.06.012
[10] Duke, W, Hyperbolic distribution problems and half-integral weight Maass forms, Invent. Math., 92, 73-90, (1988) · Zbl 0628.10029 · doi:10.1007/BF01393993
[11] Duke, W., Imamoglu, Ö., Tóth, Á.: Geometric Invariants for Real Quadratic Fields. Ann. Math. 184(3), 949-990 (2016). https://doi.org/10.4007/annals.2016.184.3.8 · Zbl 1372.11056
[12] Einsiedler, M; Lindenstrauss, E; Michel, P; Venkatesh, A, The distribution of closed geodesics on the modular surface, and duke’s theorem, L’Enseignement Mathématique, 58, 249-313, (2012) · Zbl 1312.37032 · doi:10.4171/LEM/58-3-2
[13] Ellenberg, J.S., Michel, P., Venkatesh, A.: Linnik’s Ergodic Method and the Distribution of Integer Points on Spheres. In: Automorphic Representations and \(L\)-Functions. Proceedings of the International Colloquium, Mumbai 2012, editors D. Prasad, C. S. Rajan, A. Sankaranarayanan, and J. Sengupta, Hindustan Book Agency, New Delhi, 119-185 (2013) · Zbl 1371.11071
[14] Gradshteyn, I.S., Ryzhik, I.M.: In: Jeffrey, A., Zwillinger, D. (eds.) Table of Integrals, Series, and Products, 7th edn. Academic Press, Burlington (2007) · Zbl 1208.65001
[15] Granville, A; Wigman, I, Planck-scale mass equidistribution of toral Laplace eigenfunctions, Commun. Math. Phys., 355, 767-802, (2017) · Zbl 1376.58012 · doi:10.1007/s00220-017-2953-3
[16] Han, X, Small scale quantum ergodicity in negatively curved manifolds, Nonlinearity, 28, 3263-3288, (2015) · Zbl 1386.58016 · doi:10.1088/0951-7715/28/9/3263
[17] Han, X, Small scale quantum ergodicity of random eigenbases, Commun. Math. Phys., 349, 425-440, (2017) · Zbl 1357.35241 · doi:10.1007/s00220-016-2597-8
[18] Han, X., Tacy, M.: Equidistribution of Random Waves on Small Balls. Preprint (2016), 13 pages. arXiv:1611.05983 · Zbl 1329.11046
[19] Hejhal, D.A.: On Eigenfunctions of the Laplacian for Hecke Triangle Groups. In: Hejhal, Dennis A., Friedman, Joel, Gutzwiller, Martin C., Odlyzko, Andrew M. (eds.) Emerging Applications of Number Theory, pp. 291-315. The IMA Volumes in Mathematics and Its Applications 109, Springer-Verlag, New York (1999). https://doi.org/10.1007/978-1-4612-1544-8_11 · Zbl 0919.00047
[20] Hejhal, DA; Rackner, BN, On the topography of Maass waveforms for \({{\rm PSL}}(2,{\mathbb{Z}})\), Exp. Math., 1, 275-305, (1992) · Zbl 0813.11035 · doi:10.1080/10586458.1992.10504562
[21] Hejhal, DA; Strömbergsson, A, On quantum chaos and Maass waveforms of CM-type, Found. Phys., 31, 519-533, (2001) · Zbl 1208.81102 · doi:10.1023/A:1017521729782
[22] Hezari, H; Rivière, G, \(L^p\) norms, nodal sets, and quantum ergodicity, Adv. Math., 290, 938-966, (2016) · Zbl 1332.81067 · doi:10.1016/j.aim.2015.10.027
[23] Hezari, H; Rivière, G, Quantitative equidistribution properties of toral eigenfunctions, J. Spectr. Theory, 7, 471-485, (2017) · Zbl 1369.58022 · doi:10.4171/JST/169
[24] Hoffstein, J; Lockhart, P, Coefficients of Maass forms and the Siegel zero, Ann. Math., 140, 161-176, (1994) · Zbl 0814.11032 · doi:10.2307/2118543
[25] Hu, Y.: Triple product formula and mass equidistribution on modular curves of level \(N\) to appear. Int. Math. Res. Notices (2017), p 45 . https://doi.org/10.1093/imrn/rnw322 · Zbl 0820.11040
[26] Ichino, A, Trilinear forms and the central values of triple product \(L\)-functions, Duke Math. J., 145, 281-307, (2008) · Zbl 1222.11065 · doi:10.1215/00127094-2008-052
[27] Ivić, A, On sums of Hecke series in short intervals, Journal de Théorie des Nombres de Bordeaux, 13, 453-468, (2001) · Zbl 0994.11020 · doi:10.5802/jtnb.333
[28] Iwaniec, H.: Spectral methods of automorphic forms, Second Edition, Graduate Studies in Mathematics 53, American Mathematical Society, Providence, 2002. https://doi.org/10.1090/gsm/053 · Zbl 0994.11020
[29] Iwaniec, H., Kowalski, E.: Analytic number theory, American mathematical society Colloquium Publications 53, American Mathematical Society. Providence (2004). https://doi.org/10.1090/coll/053 · Zbl 1059.11001
[30] Jakobson, D, Quantum unique ergodicity for Eisenstein series on \({{\rm PSL}}_2({\mathbb{Z}}) \ {{\rm PSL}}_2({\mathbb{R}})\), Ann. Inst. Fourier, 44, 1477-1504, (1994) · Zbl 0820.11040 · doi:10.5802/aif.1442
[31] Jutila, M; Jutila, M (ed.); Metsänkylä, T (ed.), The fourth moment of central values of Hecke series, 167-177, (2001), Berlin · Zbl 0972.11041 · doi:10.1515/9783110870923
[32] Jutila, M, The spectral mean square of Hecke \(L\)-functions on the critical line, Publications de l’Institut Mathématique, Nouvelle série, 76, 41-55, (2004) · Zbl 1098.11033 · doi:10.2298/PIM0476041J
[33] Jutila, M; Motohashi, Y, Uniform bound for Hecke \(L\)-functions, Acta Math., 195, 61-115, (2005) · Zbl 1098.11034 · doi:10.1007/BF02588051
[34] Lester, S., Matomäki, K., Radziwiłł, M.: Small Scale Distribution of Zeros and Mass of Modular Forms. Journal of the European Mathematical Society (2018), 31 pages. arXiv:1501.01292 [math.NT] · Zbl 1404.11041
[35] Lester, S; Rudnick, Z, Small scale equidistribution of eigenfunctions on the torus, Commun. Math. Phys., 350, 279-300, (2017) · Zbl 1360.58025 · doi:10.1007/s00220-016-2734-4
[36] Lindenstrauss, E, Invariant measures and arithmetic quantum unique ergodicity, Ann. Math., 163, 165-219, (2006) · Zbl 1104.22015 · doi:10.4007/annals.2006.163.165
[37] Liu, SC; Masri, R; Young, MP, Subconvexity and equidistribution of Heegner points in the level aspect, Compos. Math., 149, 1150-1174, (2013) · Zbl 1329.11046 · doi:10.1112/S0010437X13007033
[38] Luo, W, \(L^4\)-norms of the dihedral Maass forms, Int. Math. Res. Notices, 2014, 2294-2304, (2014) · Zbl 1377.11057 · doi:10.1093/imrn/rns298
[39] Luo, W; Sarnak, P, Quantum ergodicity of eigenfunctions on \({{\rm PSL}}_2({\mathbb{Z}}) \ {\mathbb{H}}^2\), Publications Mathématiques de l’Institut des Hautes Études Scientifiques, 81, 207-237, (1995) · Zbl 0852.11024 · doi:10.1007/BF02699377
[40] Michel, P., Venkatesh, A.: Equidistribution, \(L\)-Functions and Ergodic Theory: On Some Problems of Yu. Linnik. In: Proceedings of the International Congress of Mathematicians, Madrid 2006 II, editors Marta Sanz-Solé, Javier Soria, Juan Luis Varona, and Joan Verdera, European Mathematical Society, Zürich, (2006), 421-457. http://www.icm2006.org/proceedings/Vol_II/contents/ICM_Vol_2_19.pdf · Zbl 1157.11019
[41] Milićević, D, Large values of eigenfunctions on arithmetic hyperbolic surfaces, Duke Math. J., 155, 365-401, (2010) · Zbl 1219.11071 · doi:10.1215/00127094-2010-058
[42] Nelson, Paul D; Pitale, Ameya; Saha, Abhishek, Bounds for Rankin-Selberg integrals and quantum unique ergodicity for powerful levels, J. Am. Math. Soc., 27, 147-191, (2014) · Zbl 1322.11051 · doi:10.1090/S0894-0347-2013-00779-1
[43] Sarnak, P, Spectra of hyperbolic surfaces, Bull. Am. Math. Soc., 40, 441-478, (2003) · Zbl 1045.11033 · doi:10.1090/S0273-0979-03-00991-1
[44] Soundararajan, K, Quantum unique ergodicity for \({{\rm SL}}_2({\mathbb{Z}}) \ {\mathbb{H}}\), Ann. Math., 172, 1529-1538, (2010) · Zbl 1209.58019 · doi:10.4007/annals.2010.172.1529
[45] Spinu, F.: The \(L^4\) Norm of the Eisenstein Series, Ph.D. Thesis, Princeton University, (2003). http://www.math.jhu.edu/ fspinu/math/thesis.pdf · Zbl 0628.10029
[46] Watson, T.C.: Rankin Triple Products and Quantum Chaos, Ph.D. Thesis, Princeton University, (2002) (revised 2008). arXiv:0810.0425 [math.NT]
[47] Young, MP, The quantum unique ergodicity conjecture for thin sets, Adv. Math., 286, 958-1016, (2016) · Zbl 1326.81281 · doi:10.1016/j.aim.2015.09.013
[48] Young, MP, Weyl-type hybrid subconvexity bounds for twisted \(L\)-functions and Heegner points on shrinking sets, J. Eur. Math. Soc., 19, 1545-1576, (2017) · Zbl 1430.11067 · doi:10.4171/JEMS/699
[49] Young, M.P.: Explicit Calclulations with Eisenstein Series. preprint (2017), 37 pages. arXiv:1710.03624 [math.NT] · Zbl 1352.11065
[50] Zagier, D.: The Rankin-Selberg Method for Automorphic Functions which Are Not of Rapid Decay. Journal of the Faculty of Science, the University of Tokyo. Sect. 1 A, Mathematics 28(3), 415-437 (1982). http://hdl.handle.net/2261/6300 · Zbl 0377.70014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.