×

Asymptotic distribution of eigenvalues of the Hecke operators \(T_ p\). (Répartition asymptotique des valeurs propres de l’opérateur de Hecke \(T_ p\).) (French) Zbl 0871.11032

The distribution of the eigenvalues of the Hecke operators \(T_p\) for primes \(p\) on a fixed space of modular forms is a difficult problem. The author treats a similar, but more accessible problem: Let a prime \(p\) be fixed, and consider a family of spaces \(S(N,k)\) of cusp forms of even weight \(k\) and level \(N\) where \(k+N\) tends to infinity. The eigenvalues of \(T_p'=p^{-(k-1)/2}T_p\) are points in the interval \(\Omega=[-2,2]\). Is there a measure \(\mu\) on \(\Omega\) such that these points are equally distributed with respect to \(\mu\)? In the case of varying \(p\) one would expect the Sato-Tate measure \(\mu_\infty=\frac{1}{2\pi}\sqrt{4-x^2}dx\).
The main result of the paper says that there is indeed such a measure which, however, depends on \(p\) and is given by \[ \mu_p=f_p(x)\mu_\infty,\quad f_p(x)=\frac{p+1}{(\sqrt{p}+1/\sqrt{p})^2-x^2}. \] The proof is an application of the Eichler-Selberg trace formula. It is shown that the “interesting terms” in this formula are negligible compared to the “evident term”. This gives the estimate \[ |\text{Tr }T_n(N,k,\chi) - \frac{k-1}{12}\chi(\sqrt{n})n^{(1/2)k-1}\psi(N)|\ll n^{(1/2)k}\sqrt{N}d(N) \] for any positive integer \(n\), with a constant in \(\ll\) which depends only on \(n\). Here, the Hecke operator \(T_n\) acts on the cusp forms of weight \(k\), character \(\chi\) and level \(N\) relatively prime to \(n\), \(\psi(N)\) denotes the index of \(\Gamma_0(N)\) in \(\text{SL}_2(\mathbb{Z})\), \(d(N)\) is the number of divisors of \(N\), and \(\chi(\sqrt{n})=0\) if \(n\) is not a square. A corollary of the main result says that the eigenvalues of \(T_p'\) are dense in \(\Omega\). The theorem remains true if cusp forms are replaced by newforms.
An application concerns the fields of rationality of the eigenvalues of \(T_n\) on \(S(N,k)\) which are totally real algebraic integers. Let \(f_1,\dots,f_s\), with \(s=s(N,k)\), be a basis of Hecke eigenforms for \(S(N,k)\). For fixed \(i\) and variable \(n\), let \(K_i\) be the field which is generated by the eigenvalues of \(T_n\) on \(f_i\), and let \(s(N,k)_r\) denote the number of \(i\) for which \(K_i\) has degree \(r\) over \(\mathbb{Q}\). Then for any fixed \(r\) it is shown that \[ \lim_{k+N\to\infty} s(N,k)_r/s(N,k)= 0. \] Stated loosely: the majority of the fields \(K_i\) have a large degree. This has consequences for the Jacobian variety \(J_0(N)\) of the modular curve \(X_0(N)\): The dimension of the greatest simple factor of \(J_0(N)\) tends to infinity with \(N\). In particular, there are only finitely many \(N\) such that \(J_0(N)\) is isogenous to a product of elliptic curves.
In two final chapters the author shows that equidistribution with respect to \(\mu_p\) occurs also with some other objects. The first one concerns the “Frobenius angles” of families of algebraic curves over a finite field \(\mathbb{F}_q\) and the numbers of their points over extensions of \(F_q\). The second one concerns eigenvalues of incidence matrices of regular graphs.

MSC:

11F11 Holomorphic modular forms of integral weight
11F25 Hecke-Petersson operators, differential operators (one variable)
11F72 Spectral theory; trace formulas (e.g., that of Selberg)
Full Text: DOI

References:

[1] A. O. L. Atkin and J. Lehner, Hecke operators on \Gamma \(_{0}\)(\?), Math. Ann. 185 (1970), 134 – 160. · Zbl 0177.34901 · doi:10.1007/BF01359701
[2] N. Bourbaki, Éléments de mathématique. Fasc. XIII. Livre VI: Intégration. Chapitres 1, 2, 3 et 4: Inégalités de convexité, Espaces de Riesz, Mesures sur les espaces localement compacts, Prolongement d’une mesure, Espaces \?^{\?}, Deuxième édition revue et augmentée. Actualités Scientifiques et Industrielles, No. 1175, Hermann, Paris, 1965 (French). · Zbl 0136.03404
[3] Armand Brumer, The rank of \?\(_{0}\)(\?), Astérisque 228 (1995), 3, 41 – 68. Columbia University Number Theory Seminar (New York, 1992). · Zbl 0851.11035
[4] P. Cartier, Harmonic analysis on trees, Harmonic analysis on homogeneous spaces (Proc. Sympos. Pure Math., Vol. XXVI, Williams Coll., Williamstown, Mass., 1972) Amer. Math. Soc., Providence, R.I., 1973, pp. 419 – 424.
[5] Henri Cohen, Trace des opérateurs de Hecke sur \Gamma \(_{0}\)(\?), Séminaire de Théorie des Nombres (1976 – 1977), Lab. Théorie des Nombres, CNRS, Talence, 1977, pp. Exp. No. 4, 9 (French).
[6] H. Cohen, Sur les \(N\) tels que \(J_0(N)\) soit \(\mathbf {Q}\)-isogène à un produit de courbes ellliptiques, Bordeaux, 1994.
[7] David A. Cox and Walter R. Parry, Genera of congruence subgroups in \?-quaternion algebras, J. Reine Angew. Math. 351 (1984), 66 – 112. · Zbl 0531.10028
[8] Torsten Ekedahl and Jean-Pierre Serre, Exemples de courbes algébriques à jacobienne complètement décomposable, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), no. 5, 509 – 513 (French, with English and French summaries). · Zbl 0789.14026
[9] J.-H. Evertse and J. H. Silverman, Uniform bounds for the number of solutions to \?\(^{n}\)=\?(\?), Math. Proc. Cambridge Philos. Soc. 100 (1986), no. 2, 237 – 248. · Zbl 0611.10009 · doi:10.1017/S0305004100066068
[10] G. Hardy et E. Wright, An Introduction to the Theory of Numbers, \(3^{\circ }\) édition, Oxford, 1954. · Zbl 0058.03301
[11] Ki-ichiro Hashimoto, Zeta functions of finite graphs and representations of \?-adic groups, Automorphic forms and geometry of arithmetic varieties, Adv. Stud. Pure Math., vol. 15, Academic Press, Boston, MA, 1989, pp. 211 – 280. · Zbl 0709.22005
[12] M. N. Huxley, A note on polynomial congruences, Recent progress in analytic number theory, Vol. 1 (Durham, 1979) Academic Press, London-New York, 1981, pp. 193 – 196.
[13] Jun-ichi Igusa, Kroneckerian model of fields of elliptic modular functions, Amer. J. Math. 81 (1959), 561 – 577. · Zbl 0093.04502 · doi:10.2307/2372914
[14] Yasutaka Ihara, On discrete subgroups of the two by two projective linear group over \?-adic fields, J. Math. Soc. Japan 18 (1966), 219 – 235. · Zbl 0158.27702 · doi:10.2969/jmsj/01830219
[15] Yasutaka Ihara, Some remarks on the number of rational points of algebraic curves over finite fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no. 3, 721 – 724 (1982). · Zbl 0509.14019
[16] Alexander Lubotzky, Discrete groups, expanding graphs and invariant measures, Progress in Mathematics, vol. 125, Birkhäuser Verlag, Basel, 1994. With an appendix by Jonathan D. Rogawski. · Zbl 0826.22012
[17] A. Lubotzky, R. Phillips, and P. Sarnak, Ramanujan graphs, Combinatorica 8 (1988), no. 3, 261 – 277. · Zbl 0661.05035 · doi:10.1007/BF02126799
[18] F. I. Mautner, Spherical functions over \?-adic fields. I, Amer. J. Math. 80 (1958), 441 – 457. , https://doi.org/10.2307/2372794 F. I. Mautner, Spherical functions over \?-adic fields. II, Amer. J. Math. 86 (1964), 171 – 200. · Zbl 0135.17204 · doi:10.2307/2373039
[19] Brendan D. McKay, The expected eigenvalue distribution of a large regular graph, Linear Algebra Appl. 40 (1981), 203 – 216. · Zbl 0468.05039 · doi:10.1016/0024-3795(81)90150-6
[20] J.-F. Mestre, La méthode des graphes. Exemples et applications, Proceedings of the international conference on class numbers and fundamental units of algebraic number fields (Katata, 1986) Nagoya Univ., Nagoya, 1986, pp. 217 – 242 (French). · Zbl 0621.14021
[21] Kenneth A. Ribet, Twists of modular forms and endomorphisms of abelian varieties, Math. Ann. 253 (1980), no. 1, 43 – 62. · Zbl 0421.14008 · doi:10.1007/BF01457819
[22] Jürgen Rohlfs and Birgit Speh, On limit multiplicities of representations with cohomology in the cuspidal spectrum, Duke Math. J. 55 (1987), no. 1, 199 – 211. · Zbl 0626.22008 · doi:10.1215/S0012-7094-87-05511-6
[23] Gordan Savin, Limit multiplicities of cusp forms, Invent. Math. 95 (1989), no. 1, 149 – 159. · Zbl 0673.22003 · doi:10.1007/BF01394147
[24] René Schoof and Marcel van der Vlugt, Hecke operators and the weight distributions of certain codes, J. Combin. Theory Ser. A 57 (1991), no. 2, 163 – 186. · Zbl 0729.11065 · doi:10.1016/0097-3165(91)90016-A
[25] Jean-Pierre Serre, Arbres, amalgames, \?\?\(_{2}\), Société Mathématique de France, Paris, 1977 (French). Avec un sommaire anglais; Rédigé avec la collaboration de Hyman Bass; Astérisque, No. 46. · Zbl 0369.20013
[26] Jean-Pierre Serre, Sur le nombre des points rationnels d’une courbe algébrique sur un corps fini, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), no. 9, 397 – 402 (French, with English summary). · Zbl 0538.14015
[27] Freydoon Shahidi, Symmetric power \?-functions for \?\?(2), Elliptic curves and related topics, CRM Proc. Lecture Notes, vol. 4, Amer. Math. Soc., Providence, RI, 1994, pp. 159 – 182. · Zbl 0833.11016
[28] Goro Shimura, Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo; Princeton University Press, Princeton, N.J., 1971. Kanô Memorial Lectures, No. 1. · Zbl 0221.10029
[29] Goro Shimura, On the factors of the jacobian variety of a modular function field, J. Math. Soc. Japan 25 (1973), 523 – 544. · Zbl 0266.14017 · doi:10.2969/jmsj/02530523
[30] Allan J. Silberger, \?\?\?\(_{2}\) over the \?-adics: its representations, spherical functions, and Fourier analysis, Lecture Notes in Mathematics, Vol. 166, Springer-Verlag, Berlin-New York, 1970. · Zbl 0204.44102
[31] Michael A. Tsfasman, Some remarks on the asymptotic number of points, Coding theory and algebraic geometry (Luminy, 1991) Lecture Notes in Math., vol. 1518, Springer, Berlin, 1992, pp. 178 – 192. · Zbl 0806.14023 · doi:10.1007/BFb0088001
[32] M. A. Tsfasman et S. G. Vlăduţ, Asymptotic properties of zeta functions, Prépubl. de l’I.M.L., \(\textup {n}^{\textup {o}}\) 96-12, C.N.R.S., Marseille (1996).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.