×

Multipole expansion of gravitational waves: memory effects and Bondi aspects. (English) Zbl 07744268

Summary: In our previous work, we proposed an algorithm to transform the metric of an isolated matter source in the multipolar post-Minkowskian approximation in harmonic (de Donder) gauge to the Newman-Unti gauge. We then applied this algorithm at linear order and for specific quadratic interactions known as quadratic tail terms. In the present work, we extend this analysis to quadratic interactions associated with the coupling of two mass quadrupole moments, including both instantaneous and hereditary terms. Our main result is the derivation of the metric in Newman-Unti and Bondi gauges with complete quadrupole-quadrupole interactions. We rederive the displacement memory effect and provide expressions for all Bondi aspects and dressed Bondi aspects relevant to the study of leading and subleading memory effects. Then we obtain the Newman-Penrose charges, the BMS charges as well as the second and third order celestial charges defined from the known second order and novel third order dressed Bondi aspects for mass monopole-quadrupole and quadrupole-quadrupole interactions.

MSC:

81-XX Quantum theory

Software:

xAct

References:

[1] L. Blanchet, Contribution à l’étude du rayonnement gravitationnel émis par un système isolé (in French), habilitation thesis, Université Pierre et Marie Curie, Paris VI, Paris, France (1990).
[2] D. Christodoulou, Nonlinear nature of gravitation and gravitational wave experiments, Phys. Rev. Lett.67 (1991) 1486 [INSPIRE]. · Zbl 0990.83504
[3] A.G. Wiseman and C.M. Will, Christodoulou’s nonlinear gravitational wave memory: evaluation in the quadrupole approximation, Phys. Rev. D44 (1991) R2945 [INSPIRE].
[4] K.S. Thorne, Gravitational-wave bursts with memory: the Christodoulou effect, Phys. Rev. D45 (1992) 520 [INSPIRE].
[5] L. Blanchet and T. Damour, Hereditary effects in gravitational radiation, Phys. Rev. D46 (1992) 4304 [INSPIRE].
[6] H. Bondi, M.G.J. van der Burg and A.W.K. Metzner, Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems, Proc. Roy. Soc. Lond. A269 (1962) 21 [INSPIRE]. · Zbl 0106.41903
[7] R.K. Sachs, Gravitational waves in general relativity. 8. Waves in asymptotically flat space-times, Proc. Roy. Soc. Lond. A270 (1962) 103 [INSPIRE]. · Zbl 0101.43605
[8] E.T. Newman and R. Penrose, Note on the Bondi-Metzner-Sachs group, J. Math. Phys.7 (1966) 863 [INSPIRE].
[9] A. Strominger and A. Zhiboedov, Gravitational memory, BMS supertranslations and soft theorems, JHEP01 (2016) 086 [arXiv:1411.5745] [INSPIRE]. · Zbl 1388.83072
[10] L. Blanchet, G. Faye, B.R. Iyer and S. Sinha, The third post-Newtonian gravitational wave polarisations and associated spherical harmonic modes for inspiralling compact binaries in quasi-circular orbits, Class. Quant. Grav.25 (2008) 165003 [Erratum ibid.29 (2012) 239501] [arXiv:0802.1249] [INSPIRE]. · Zbl 1147.83300
[11] L. Blanchet and T. Damour, Radiative gravitational fields in general relativity 1. General structure of the field outside the source, Phil. Trans. Roy. Soc. Lond. A320 (1986) 379 [INSPIRE]. · Zbl 0604.35073
[12] L. Blanchet, Radiative gravitational fields in general relativity 2. Asymptotic behaviour at future null infinity, Proc. Roy. Soc. Lond. A409 (1987) 383 [INSPIRE]. · Zbl 0658.35084
[13] L. Blanchet and T. Damour, Tail transported temporal correlations in the dynamics of a gravitating system, Phys. Rev. D37 (1988) 1410 [INSPIRE].
[14] Mitman, K., Computation of displacement and spin gravitational memory in numerical relativity, Phys. Rev. D, 102 (2020) · doi:10.1103/PhysRevD.102.104007
[15] Mitman, K., Fixing the BMS frame of numerical relativity waveforms, Phys. Rev. D, 104 (2021) · doi:10.1103/PhysRevD.104.024051
[16] Favata, M., Nonlinear gravitational-wave memory from binary black hole mergers, Astrophys. J. Lett., 696, L159 (2009) · doi:10.1088/0004-637X/696/2/L159
[17] Lasky, PD, Detecting gravitational-wave memory with LIGO: implications of GW150914, Phys. Rev. Lett., 117 (2016) · doi:10.1103/PhysRevLett.117.061102
[18] McNeill, LO; Thrane, E.; Lasky, PD, Detecting gravitational wave memory without parent signals, Phys. Rev. Lett., 118 (2017) · doi:10.1103/PhysRevLett.118.181103
[19] Wang, JB, Searching for gravitational wave memory bursts with the Parkes Pulsar Timing Array, Mon. Not. Roy. Astron. Soc., 446, 1657 (2015) · doi:10.1093/mnras/stu2137
[20] NANOGrav collaboration, NANOGrav constraints on gravitational wave bursts with memory, Astrophys. J.810 (2015) 150 [arXiv:1501.05343] [INSPIRE].
[21] Y.B. Zel’dovich and A.G. Polnarev, Radiation of gravitational waves by a cluster of superdense stars, Sov. Astron.18 (1974) 17 [INSPIRE].
[22] V.B. Braginsky and L.P. Grishchuk, Kinematic resonance and memory effect in free mass gravitational antennas, Sov. Phys. JETP62 (1985) 427 [INSPIRE].
[23] M. Turner, Gravitational radiation from point-masses in unbound orbits — Newtonian results, Astrophys. J.216 (1977) 610.
[24] R. Epstein, The generation of gravitational radiation by escaping supernova neutrinos, Astrophys. J.223 (1978) 1037 [INSPIRE].
[25] Bieri, L.; Chen, PN; Yau, S-T, Null asymptotics of solutions of the Einstein-Maxwell equations in general relativity and gravitational radiation, Adv. Theor. Math. Phys., 15, 1085 (2011) · Zbl 1251.83015 · doi:10.4310/ATMP.2011.v15.n4.a5
[26] Bieri, L.; Garfinkle, D., Perturbative and gauge invariant treatment of gravitational wave memory, Phys. Rev. D, 89 (2014) · doi:10.1103/PhysRevD.89.084039
[27] Pasterski, S.; Strominger, A.; Zhiboedov, A., New gravitational memories, JHEP, 12, 053 (2016) · Zbl 1390.83024 · doi:10.1007/JHEP12(2016)053
[28] Nichols, DA, Center-of-mass angular momentum and memory effect in asymptotically flat spacetimes, Phys. Rev. D, 98 (2018) · doi:10.1103/PhysRevD.98.064032
[29] Flanagan, ÉÉ; Grant, AM; Harte, AI; Nichols, DA, Persistent gravitational wave observables: general framework, Phys. Rev. D, 99 (2019) · doi:10.1103/PhysRevD.99.084044
[30] Himwich, E.; Mirzaiyan, Z.; Pasterski, S., A note on the subleading soft graviton, JHEP, 04, 172 (2021) · Zbl 1462.83006 · doi:10.1007/JHEP04(2021)172
[31] A.M. Grant and D.A. Nichols, Persistent gravitational wave observables: curve deviation in asymptotically flat spacetimes, Phys. Rev. D105 (2022) 024056 [Erratum ibid.107 (2023) 109902] [arXiv:2109.03832] [INSPIRE].
[32] Seraj, A., Gravitational breathing memory and dual symmetries, JHEP, 05, 283 (2021) · Zbl 1466.83087 · doi:10.1007/JHEP05(2021)283
[33] A. Seraj and B. Oblak, Gyroscopic gravitational memory, arXiv:2112.04535 [INSPIRE].
[34] Seraj, A.; Oblak, B., Precession caused by gravitational waves, Phys. Rev. Lett., 129 (2022) · doi:10.1103/PhysRevLett.129.061101
[35] Godazgar, M.; Macaulay, G.; Long, G.; Seraj, A., Gravitational memory effects and higher derivative actions, JHEP, 09, 150 (2022) · Zbl 1531.83009 · doi:10.1007/JHEP09(2022)150
[36] Barnich, G.; Troessaert, C., Symmetries of asymptotically flat 4 dimensional spacetimes at null infinity revisited, Phys. Rev. Lett., 105 (2010) · doi:10.1103/PhysRevLett.105.111103
[37] Barnich, G.; Troessaert, C., Aspects of the BMS/CFT correspondence, JHEP, 05, 062 (2010) · Zbl 1287.83043 · doi:10.1007/JHEP05(2010)062
[38] Campiglia, M.; Laddha, A., New symmetries for the gravitational S-matrix, JHEP, 04, 076 (2015) · Zbl 1388.83094 · doi:10.1007/JHEP04(2015)076
[39] Compère, G.; Oliveri, R.; Seraj, A., Gravitational multipole moments from Noether charges, JHEP, 05, 054 (2018) · Zbl 1391.83014 · doi:10.1007/JHEP05(2018)054
[40] Godazgar, H.; Godazgar, M.; Pope, CN, New dual gravitational charges, Phys. Rev. D, 99 (2019) · doi:10.1103/PhysRevD.99.024013
[41] Godazgar, H.; Godazgar, M.; Pope, CN, Tower of subleading dual BMS charges, JHEP, 03, 057 (2019) · Zbl 1414.83054 · doi:10.1007/JHEP03(2019)057
[42] Compère, G., Infinite towers of supertranslation and superrotation memories, Phys. Rev. Lett., 123 (2019) · doi:10.1103/PhysRevLett.123.021101
[43] A. Strominger, w_1+∞and the celestial sphere, arXiv:2105.14346 [INSPIRE].
[44] Kapec, D.; Mitra, P.; Raclariu, A-M; Strominger, A., 2D stress tensor for 4D gravity, Phys. Rev. Lett., 119 (2017) · doi:10.1103/PhysRevLett.119.121601
[45] Godazgar, H.; Godazgar, M.; Pope, CN, Dual gravitational charges and soft theorems, JHEP, 10, 123 (2019) · Zbl 1427.83015 · doi:10.1007/JHEP10(2019)123
[46] Freidel, L.; Pranzetti, D.; Raclariu, A-M, Higher spin dynamics in gravity and w_1+∞celestial symmetries, Phys. Rev. D, 106 (2022) · doi:10.1103/PhysRevD.106.086013
[47] A. Papapetrou, Coordonnées radiatives cartésiennes (in French), Ann. Inst. Henri Poincaré AXI (1969) 251.
[48] J. Madore, Gravitational radiation from a bounded source. I, Ann. Inst. Henri Poincaré12 (1970) 285.
[49] J. Madore, Gravitational radiation from a bounded source. II, Ann. Inst. Henri Poincaré12 (1970) 365.
[50] E.T. Newman and T.W.J. Unti, A class of null flat-space coordinate systems, J. Math. Phys.4 (1963) 1467 [INSPIRE]. · Zbl 0118.22503
[51] G. Barnich and P.-H. Lambert, A note on the Newman-Unti group and the BMS charge algebra in terms of Newman-Penrose coefficients, Adv. Math. Phys.2012 (2012) 197385 [arXiv:1102.0589] [INSPIRE]. · Zbl 1266.83132
[52] R. Sachs, Asymptotic symmetries in gravitational theory, Phys. Rev.128 (1962) 2851 [INSPIRE]. · Zbl 0114.21202
[53] M.G.J. van der Burg, Gravitational waves in general relativity IX. Conserved quantities, Proc. Roy. Soc. Lond. A294 (1966) 112.
[54] L.A. Tamburino and J.H. Winicour, Gravitational fields in finite and conformal Bondi frames, Phys. Rev.150 (1966) 1039 [INSPIRE]. · Zbl 0142.24003
[55] J. Winicour, Logarithmic asymptotic flatness, Found. Phys.15 (1985) 605.
[56] Freidel, L.; Pranzetti, D.; Raclariu, A-M, Sub-subleading soft graviton theorem from asymptotic Einstein’s equations, JHEP, 05, 186 (2022) · Zbl 1522.83017 · doi:10.1007/JHEP05(2022)186
[57] Barnich, G.; Troessaert, C., BMS charge algebra, JHEP, 12, 105 (2011) · Zbl 1306.83002 · doi:10.1007/JHEP12(2011)105
[58] Flanagan, ÉÉ; Nichols, DA, Conserved charges of the extended Bondi-Metzner-Sachs algebra, Phys. Rev. D, 95 (2017) · doi:10.1103/PhysRevD.95.044002
[59] Barnich, G.; Mao, P.; Ruzziconi, R., BMS current algebra in the context of the Newman-Penrose formalism, Class. Quant. Grav., 37 (2020) · Zbl 1479.83179 · doi:10.1088/1361-6382/ab7c01
[60] Compère, G.; Oliveri, R.; Seraj, A., The Poincaré and BMS flux-balance laws with application to binary systems, JHEP, 10, 116 (2020) · Zbl 1456.83015 · doi:10.1007/JHEP10(2020)116
[61] Blanchet, L., Multipole expansion of gravitational waves: from harmonic to Bondi coordinates, JHEP, 02, 029 (2021) · Zbl 1460.83021 · doi:10.1007/JHEP02(2021)029
[62] L. Blanchet, B.R. Iyer, C.M. Will and A.G. Wiseman, Gravitational wave forms from inspiralling compact binaries to second post-Newtonian order, Class. Quant. Grav.13 (1996) 575 [gr-qc/9602024] [INSPIRE]. · Zbl 0875.53011
[63] K.G. Arun, L. Blanchet, B.R. Iyer and M.S.S. Qusailah, The 2.5PN gravitational wave polarisations from inspiralling compact binaries in circular orbits, Class. Quant. Grav.21 (2004) 3771 [Erratum ibid.22 (2005) 3115] [gr-qc/0404085] [INSPIRE]. · Zbl 1075.83015
[64] Kidder, LE; Blanchet, L.; Iyer, BR, Radiation reaction in the 2.5PN waveform from inspiralling binaries in circular orbits, Class. Quant. Grav., 24, 5307 (2007) · Zbl 1126.83006 · doi:10.1088/0264-9381/24/20/N01
[65] Nichols, DA, Spin memory effect for compact binaries in the post-Newtonian approximation, Phys. Rev. D, 95 (2017) · doi:10.1103/PhysRevD.95.084048
[66] Blanchet, L.; Faye, G., Flux-balance equations for linear momentum and center-of-mass position of self-gravitating post-Newtonian systems, Class. Quant. Grav., 36 (2019) · Zbl 1476.83073 · doi:10.1088/1361-6382/ab0d4f
[67] E.T. Newman and R. Penrose, 10 exact gravitationally-conserved quantities, Phys. Rev. Lett.15 (1965) 231 [INSPIRE].
[68] E.T. Newman and R. Penrose, New conservation laws for zero rest-mass fields in asymptotically flat space-time, Proc. Roy. Soc. Lond. A305 (1968) 175 [INSPIRE].
[69] G. Compère, A. Fiorucci and R. Ruzziconi, Superboost transitions, refraction memory and super-Lorentz charge algebra, JHEP11 (2018) 200 [Erratum ibid.04 (2020) 172] [arXiv:1810.00377] [INSPIRE]. · Zbl 1405.83004
[70] R. Sachs and P.G. Bergmann, Structure of particles in linearized gravitational theory, Phys. Rev.112 (1958) 674 [INSPIRE]. · Zbl 0083.43001
[71] F.A.E. Pirani, Introduction to gravitational radiation theory, volume 1 of Brandeis summer institute in theoretical physics, Prentice-Hall, Englewood Cliffs, NJ, U.S.A. (1964), p. 249.
[72] K.S. Thorne, Multipole expansions of gravitational radiation, Rev. Mod. Phys.52 (1980) 299 [INSPIRE].
[73] L. Blanchet and T. Damour, Radiative gravitational fields in general relativity I. General structure of the field outside the source, Phil. Trans. Roy. Soc. Lond. A320 (1986) 379 [INSPIRE]. · Zbl 0604.35073
[74] R. Epstein and R.V. Wagoner, Post-Newtonian generation of gravitational waves, Astrophys. J.197 (1975) 717.
[75] Kozameh, CN; Quiroga, GD, Center of mass and spin for isolated sources of gravitational radiation, Phys. Rev. D, 93 (2016) · doi:10.1103/PhysRevD.93.064050
[76] Kozameh, CN; Nieva, JI; Quiroga, GD, Spin and center of mass comparison between the post-Newtonian approach and the asymptotic formulation, Phys. Rev. D, 98 (2018) · doi:10.1103/PhysRevD.98.064005
[77] L. Blanchet, Quadrupole-quadrupole gravitational waves, Class. Quant. Grav.15 (1998) 89 [gr-qc/9710037] [INSPIRE]. · Zbl 0925.53030
[78] V.B. Braginsky and K.S. Thorne, Gravitational-wave bursts with memory and experimental prospects, Nature327 (1987) 123.
[79] P.N. Payne, Smarr’s zero frequency limit calculation, Phys. Rev. D28 (1983) 1894 [INSPIRE].
[80] M. Ludvigsen, Geodesic deviation at null infinity and the physical effects of very long wave gravitational radiation, Gen. Rel. Grav.21 (1989) 1205 [INSPIRE]. · Zbl 0678.53076
[81] J.M. Martín-García et al., xAct: efficient tensor computer algebra for Mathematica, http://www.xact.es/, GPL (2002)-(2012).
[82] Blanchet, L., Gravitational radiation from post-Newtonian sources and inspiralling compact binaries, Living Rev. Rel., 17, 2 (2014) · Zbl 1316.83003 · doi:10.12942/lrr-2014-2
[83] Compère, G.; Oliveri, R.; Seraj, A., Metric reconstruction from celestial multipoles, JHEP, 11, 001 (2022) · Zbl 1536.83001 · doi:10.1007/JHEP11(2022)001
[84] A.R. Exton, E.T. Newman and R. Penrose, Conserved quantities in the Einstein-Maxwell theory, J. Math. Phys.10 (1969) 1566 [INSPIRE].
[85] Freidel, L.; Oliveri, R.; Pranzetti, D.; Speziale, S., The Weyl BMS group and Einstein’s equations, JHEP, 07, 170 (2021) · Zbl 1468.83017 · doi:10.1007/JHEP07(2021)170
[86] Freidel, L.; Pranzetti, D., Gravity from symmetry: duality and impulsive waves, JHEP, 04, 125 (2022) · Zbl 1522.83007 · doi:10.1007/JHEP04(2022)125
[87] Godazgar, H.; Godazgar, M.; Pope, CN, Subleading BMS charges and fake news near null infinity, JHEP, 01, 143 (2019) · Zbl 1409.83012 · doi:10.1007/JHEP01(2019)143
[88] E. Whittaker and G. Watson, A course of modern analysis, Cambridge University Press, Cambridge, U.K. (1990). · JFM 45.0433.02
[89] Blanchet, L.; Faye, G.; Larrouturou, F., The quadrupole moment of compact binaries to the fourth post-Newtonian order: from source to canonical moment, Class. Quant. Grav., 39 (2022) · Zbl 1504.83001 · doi:10.1088/1361-6382/ac840c
[90] Trestini, D.; Larrouturou, F.; Blanchet, L., The quadrupole moment of compact binaries to the fourth post-Newtonian order: relating the harmonic and radiative metrics, Class. Quant. Grav., 40 (2023) · Zbl 1518.85003 · doi:10.1088/1361-6382/acb5de
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.