×

Gravitational memory effects and higher derivative actions. (English) Zbl 1531.83009

Summary: We show that charges associated with the internal Lorentz symmetries of general relativity, with higher derivative boundary terms included in the action, capture observable gravitational wave effects. In particular, the Gauss-Bonnet charge measures the precession rate of a freely-falling gyroscope, while the Pontryagin charge encodes the relative radial acceleration of freely-falling test masses. This relation highlights the importance of the tetrad formalism and the physical significance of asymptotic internal Lorentz symmetries.

MSC:

83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83C40 Gravitational energy and conservation laws; groups of motions
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C45 Quantization of the gravitational field

References:

[1] LIGO Scientific and Virgo collaborations, Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett.116 (2016) 061102 [arXiv:1602.03837] [INSPIRE].
[2] Strominger, A., On BMS Invariance of Gravitational Scattering, JHEP, 07, 152 (2014) · Zbl 1392.81215 · doi:10.1007/JHEP07(2014)152
[3] A. Strominger and A. Zhiboedov, Gravitational Memory, BMS Supertranslations and Soft Theorems, JHEP01 (2016) 086 [arXiv:1411.5745] [INSPIRE]. · Zbl 1388.83072
[4] Pasterski, S.; Strominger, A.; Zhiboedov, A., New Gravitational Memories, JHEP, 12, 053 (2016) · Zbl 1390.83024 · doi:10.1007/JHEP12(2016)053
[5] A. Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory, arXiv:1703.05448 [INSPIRE]. · Zbl 1408.83003
[6] D.A. Nichols, Spin memory effect for compact binaries in the post-Newtonian approximation, Phys. Rev. D95 (2017) 084048 [arXiv:1702.03300] [INSPIRE].
[7] D.A. Nichols, Center-of-mass angular momentum and memory effect in asymptotically flat spacetimes, Phys. Rev. D98 (2018) 064032 [arXiv:1807.08767] [INSPIRE].
[8] Seraj, A., Gravitational breathing memory and dual symmetries, JHEP, 05, 283 (2021) · Zbl 1466.83087 · doi:10.1007/JHEP05(2021)283
[9] A.M. Grant and D.A. Nichols, Persistent gravitational wave observables: Curve deviation in asymptotically flat spacetimes, Phys. Rev. D105 (2022) 024056 [arXiv:2109.03832] [INSPIRE].
[10] Bondi, H.; van der Burg, MGJ; Metzner, AWK, Gravitational waves in general relativity: 7. Waves from axisymmetric isolated systems, Proc. Roy. Soc. Lond., A269, 21 (1962) · Zbl 0106.41903
[11] R.K. Sachs, Gravitational waves in general relativity: 8. Waves in asymptotically flat space-times, Proc. Roy. Soc. Lond.A270 (1962) 103. · Zbl 0101.43605
[12] G. Barnich and C. Troessaert, Symmetries of asymptotically flat 4 dimensional spacetimes at null infinity revisited, Phys. Rev. Lett.105 (2010) 111103 [arXiv:0909.2617] [INSPIRE]. · Zbl 1342.83228
[13] M. Campiglia and A. Laddha, Asymptotic symmetries and subleading soft graviton theorem, Phys. Rev. D90 (2014) 124028 [arXiv:1408.2228] [INSPIRE]. · Zbl 1388.83199
[14] Mao, P.; Wu, X., More on gravitational memory, JHEP, 05, 058 (2019) · Zbl 1416.83019 · doi:10.1007/JHEP05(2019)058
[15] H. Godazgar, M. Godazgar and M.J. Perry, Asymptotic gravitational charges, Phys. Rev. Lett.125 (2020) 101301 [arXiv:2007.01257] [INSPIRE]. · Zbl 1454.83134
[16] Godazgar, H.; Godazgar, M.; Pope, CN, Tower of subleading dual BMS charges, JHEP, 03, 057 (2019) · Zbl 1414.83054 · doi:10.1007/JHEP03(2019)057
[17] Freidel, L.; Oliveri, R.; Pranzetti, D.; Speziale, S., The Weyl BMS group and Einstein’s equations, JHEP, 07, 170 (2021) · Zbl 1468.83017 · doi:10.1007/JHEP07(2021)170
[18] A. Strominger, w(1+infinity) and the Celestial Sphere, arXiv:2105.14346 [INSPIRE].
[19] Zel’dovich, YB; Polnarev, AG, Radiation of gravitational waves by a cluster of superdense stars, Sov. Astron., 18, 17 (1974)
[20] V.B. Braginsky and L.P. Grishchuk, Kinematic Resonance and Memory Effect in Free Mass Gravitational Antennas, Sov. Phys. JETP62 (1985) 427 [INSPIRE].
[21] D. Christodoulou, Nonlinear nature of gravitation and gravitational wave experiments, Phys. Rev. Lett.67 (1991) 1486 [INSPIRE]. · Zbl 0990.83504
[22] L. Blanchet and T. Damour, Hereditary effects in gravitational radiation, Phys. Rev. D46 (1992) 4304 [INSPIRE].
[23] M. Favata, The gravitational-wave memory effect, Class. Quant. Grav.27 (2010) 084036 [arXiv:1003.3486] [INSPIRE]. · Zbl 1188.83034
[24] Compère, G.; Oliveri, R.; Seraj, A., Gravitational multipole moments from Noether charges, JHEP, 05, 054 (2018) · Zbl 1391.83014 · doi:10.1007/JHEP05(2018)054
[25] Compère, G.; Oliveri, R.; Seraj, A., The Poincaré and BMS flux-balance laws with application to binary systems, JHEP, 10, 116 (2020) · Zbl 1456.83015 · doi:10.1007/JHEP10(2020)116
[26] Mao, P., Remarks on infinite towers of gravitational memories, JHEP, 11, 102 (2020) · doi:10.1007/JHEP11(2020)102
[27] P. Mao, Note on electromagnetic memories, Phys. Rev. D104 (2021) 084026 [arXiv:2105.06095] [INSPIRE].
[28] Freidel, L.; Pranzetti, D., Gravity from symmetry: duality and impulsive waves, JHEP, 04, 125 (2022) · Zbl 1522.83007 · doi:10.1007/JHEP04(2022)125
[29] Braginsky, VB; Thorne, KS, Gravitational-wave bursts with memory and experimental prospects, Nature, 327, 123 (1987) · doi:10.1038/327123a0
[30] Zhang, PM; Duval, C.; Gibbons, GW; Horvathy, PA, The Memory Effect for Plane Gravitational Waves, Phys. Lett. B, 772, 743 (2017) · doi:10.1016/j.physletb.2017.07.050
[31] P.M. Zhang, C. Duval, G.W. Gibbons and P.A. Horvathy, Soft gravitons and the memory effect for plane gravitational waves, Phys. Rev. D96 (2017) 064013 [arXiv:1705.01378] [INSPIRE].
[32] E.E. Flanagan, A.M. Grant, A.I. Harte and D.A. Nichols, Persistent gravitational wave observables: general framework, Phys. Rev. D99 (2019) 084044 [arXiv:1901.00021] [INSPIRE].
[33] Hou, S.; Zhu, Z-H, Gravitational memory effects and Bondi-Metzner-Sachs symmetries in scalar-tensor theories, JHEP, 01, 083 (2021) · Zbl 1459.83041 · doi:10.1007/JHEP01(2021)083
[34] S. Tahura, D.A. Nichols, A. Saffer, L.C. Stein and K. Yagi, Brans-Dicke theory in Bondi-Sachs form: Asymptotically flat solutions, asymptotic symmetries and gravitational-wave memory effects, Phys. Rev. D103 (2021) 104026 [arXiv:2007.13799] [INSPIRE].
[35] S. Tahura, D.A. Nichols and K. Yagi, Gravitational-wave memory effects in Brans-Dicke theory: Waveforms and effects in the post-Newtonian approximation, Phys. Rev. D104 (2021) 104010 [arXiv:2107.02208] [INSPIRE].
[36] Barnich, G.; Troessaert, C., Aspects of the BMS/CFT correspondence, JHEP, 05, 062 (2010) · Zbl 1287.83043 · doi:10.1007/JHEP05(2010)062
[37] Godazgar, H.; Godazgar, M.; Pope, CN, Subleading BMS charges and fake news near null infinity, JHEP, 01, 143 (2019) · Zbl 1409.83012 · doi:10.1007/JHEP01(2019)143
[38] H. Godazgar, M. Godazgar and C.N. Pope, New dual gravitational charges, Phys. Rev. D99 (2019) 024013 [arXiv:1812.01641] [INSPIRE]. · Zbl 1427.83015
[39] Guevara, A.; Himwich, E.; Pate, M.; Strominger, A., Holographic symmetry algebras for gauge theory and gravity, JHEP, 11, 152 (2021) · Zbl 1521.81144 · doi:10.1007/JHEP11(2021)152
[40] M. Geiller and C. Zwikel, The partial Bondi gauge: Further enlarging the asymptotic structure of gravity, arXiv:2205.11401 [INSPIRE]. · Zbl 1472.83034
[41] G. Barnich, P. Mao and R. Ruzziconi, Conserved currents in the Cartan formulation of general relativity, in About Various Kinds of Interactions: Workshop in honour of ProfeSSOR Philippe Spindel, 11, 2016 [arXiv:1611.01777] [INSPIRE].
[42] De Paoli, E.; Speziale, S., A gauge-invariant symplectic potential for tetrad general relativity, JHEP, 07, 040 (2018) · Zbl 1395.83046 · doi:10.1007/JHEP07(2018)040
[43] Oliveri, R.; Speziale, S., Boundary effects in General Relativity with tetrad variables, Gen. Rel. Grav., 52, 83 (2020) · Zbl 1468.83009 · doi:10.1007/s10714-020-02733-8
[44] G. Barnich, P. Mao and R. Ruzziconi, BMS current algebra in the context of the Newman-Penrose formalism, Class. Quant. Grav.37 (2020) 095010 [arXiv:1910.14588] [INSPIRE]. · Zbl 1479.83179
[45] M. Godazgar and G. Long, Higher derivative asymptotic charges and internal Lorentz symmetries, Phys. Rev. D105 (2022) 084037 [arXiv:2201.07014] [INSPIRE].
[46] Liu, H-S; Mao, P., Near horizon gravitational charges, JHEP, 05, 123 (2022) · Zbl 1522.83253
[47] R.E. Peierls, The commutation laws of relativistic field theory, Proc. Roy. Soc. Lond.A214 (1952) 143 · Zbl 0048.44606
[48] P.G. Bergmann and R. Schiller, Classical and Quantum Field Theories in the Lagrangian Formalism, Phys. Rev.89 (1953) 4 [INSPIRE]. · Zbl 0050.42901
[49] C. Crnkowic and E. Witten, Covariant description of canonical formalism in geometrical theories, in S.W. Hawking and W. Israel eds., Three Hundred Years of Gravitation, CUP (1989), p. 676. · Zbl 0966.81533
[50] C. Crnkovic, Symplectic Geometry of the Covariant Phase Space, Superstrings and Superspace, Class. Quant. Grav.5 (1988) 1557 [INSPIRE]. · Zbl 0665.53052
[51] J. Lee and R.M. Wald, Local symmetries and constraints, J. Math. Phys.31 (1990) 725 [INSPIRE]. · Zbl 0704.70013
[52] V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev. D50 (1994) 846 [gr-qc/9403028] [INSPIRE].
[53] R.M. Wald and A. Zoupas, A General definition of ‘conserved quantities’ in general relativity and other theories of gravity, Phys. Rev. D61 (2000) 084027 [gr-qc/9911095] [INSPIRE]. · Zbl 1136.83317
[54] Barnich, G.; Troessaert, C., BMS charge algebra, JHEP, 12, 105 (2011) · Zbl 1306.83002 · doi:10.1007/JHEP12(2011)105
[55] Hosseinzadeh, V.; Seraj, A.; Sheikh-Jabbari, MM, Soft Charges and Electric-Magnetic Duality, JHEP, 08, 102 (2018) · Zbl 1396.81116 · doi:10.1007/JHEP08(2018)102
[56] T. Jacobson and A. Mohd, Black hole entropy and Lorentz-diffeomorphism Noether charge, Phys. Rev. D92 (2015) 124010 [arXiv:1507.01054] [INSPIRE].
[57] K. Prabhu, The First Law of Black Hole Mechanics for Fields with Internal Gauge Freedom, Class. Quant. Grav.34 (2017) 035011 [arXiv:1511.00388] [INSPIRE]. · Zbl 1358.83058
[58] Barnich, G.; Troessaert, C., Finite BMS transformations, JHEP, 03, 167 (2016) · Zbl 1388.83514 · doi:10.1007/JHEP03(2016)167
[59] Nguyen, K.; Salzer, J., The effective action of superrotation modes, JHEP, 02, 108 (2021) · Zbl 1460.83008 · doi:10.1007/JHEP02(2021)108
[60] Godazgar, H.; Godazgar, M.; Perry, MJ, Hamiltonian derivation of dual gravitational charges, JHEP, 09, 084 (2020) · Zbl 1454.83134 · doi:10.1007/JHEP09(2020)084
[61] L. Freidel, M. Geiller and D. Pranzetti, Edge modes of gravity. Part I. Corner potentials and charges, JHEP11 (2020) 026 [arXiv:2006.12527] [INSPIRE]. · Zbl 1460.83030
[62] L. Freidel, M. Geiller and D. Pranzetti, Edge modes of gravity. Part II. Corner metric and Lorentz charges, JHEP11 (2020) 027 [arXiv:2007.03563] [INSPIRE]. · Zbl 1456.83024
[63] Oliveri, R.; Speziale, S., A note on dual gravitational charges, JHEP, 12, 079 (2020) · Zbl 1457.83011 · doi:10.1007/JHEP12(2020)079
[64] A. Seraj and B. Oblak, Gyroscopic Gravitational Memory, arXiv:2112.04535 [INSPIRE].
[65] A. Seraj and B. Oblak, Precession Caused by Gravitational Waves, Phys. Rev. Lett.129 (2022) 061101 [arXiv:2203.16216] [INSPIRE].
[66] Campiglia, M.; Laddha, A., New symmetries for the Gravitational S-matrix, JHEP, 04, 076 (2015) · Zbl 1388.83094 · doi:10.1007/JHEP04(2015)076
[67] E.E. Flanagan and D.A. Nichols, Conserved charges of the extended Bondi-Metzner-Sachs algebra, Phys. Rev. D95 (2017) 044002 [arXiv:1510.03386] [INSPIRE].
[68] D.R. Madison, Persistent Astrometric Deflections from Gravitational-Wave Memory, Phys. Rev. Lett.125 (2020) 041101 [arXiv:2007.12206] [INSPIRE].
[69] P.D. Lasky, E. Thrane, Y. Levin, J. Blackman and Y. Chen, Detecting gravitational-wave memory with LIGO: implications of GW150914, Phys. Rev. Lett.117 (2016) 061102 [arXiv:1605.01415] [INSPIRE].
[70] O.M. Boersma, D.A. Nichols and P. Schmidt, Forecasts for detecting the gravitational-wave memory effect with Advanced LIGO and Virgo, Phys. Rev. D101 (2020) 083026 [arXiv:2002.01821] [INSPIRE].
[71] K. Islo, J. Simon, S. Burke-Spolaor and X. Siemens, Prospects for Memory Detection with Low-Frequency Gravitational Wave Detectors, arXiv:1906.11936 [INSPIRE].
[72] G. Compère, R. Oliveri and A. Seraj, Metric reconstruction from celestial multipoles, arXiv:2206.12597 [INSPIRE]. · Zbl 1391.83014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.