×

The Weyl BMS group and Einstein’s equations. (English) Zbl 1468.83017

Summary: We propose an extension of the BMS group, which we refer to as Weyl BMS or BMSW for short, that includes super-translations, local Weyl rescalings and arbitrary diffeomorphisms of the 2d sphere metric. After generalizing the Barnich-Troessaert bracket, we show that the Noether charges of the BMSW group provide a centerless representation of the BMSW Lie algebra at every cross section of null infinity. This result is tantamount to proving that the flux-balance laws for the Noether charges imply the validity of the asymptotic Einstein’s equations at null infinity. The extension requires a holographic renormalization procedure, which we construct without any dependence on background fields. The renormalized phase space of null infinity reveals new pairs of conjugate variables. Finally, we show that BMSW group elements label the gravitational vacua.

MSC:

83C45 Quantization of the gravitational field
83E05 Geometrodynamics and the holographic principle
81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
53Z05 Applications of differential geometry to physics

References:

[1] E. Noether, Invariant variation problems, Gott. Nachr.1918 (1918) 235 [physics/0503066] [INSPIRE]. · JFM 46.0770.01
[2] Bondi, H., Gravitational waves in general Relativity, Nature, 186, 535 (1960) · Zbl 0087.42504
[3] H. Bondi, M. G. J. van der Burg and A.W.K. Metzner, Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems, Proc. Roy. Soc. Lond. A269 (1962) 21. · Zbl 0106.41903
[4] Sachs, RK, On the characteristic initial value problem in gravitational theory, J. Math. Phys., 3, 908 (1962) · Zbl 0111.42202
[5] Newman, ET; Unti, TWJ, Behavior of asymptotically flat empty spaces, J. Math. Phys., 3, 891 (1962) · Zbl 0113.21006
[6] Mädler, T.; Winicour, J., Bondi-Sachs formalism, Scholarpedia, 11, 33528 (2016)
[7] Weinberg, S., Infrared photons and gravitons, Phys. Rev., 140, B516 (1965)
[8] Christodoulou, D., Nonlinear nature of gravitation and gravitational wave experiments, Phys. Rev. Lett., 67, 1486 (1991) · Zbl 0990.83504
[9] Braginsky, KST, Gravitational-wave bursts with memory and experimental prospects, Nature, 327, 123 (1987)
[10] Strominger, A., On BMS invariance of gravitational scattering, JHEP, 07, 152 (2014) · Zbl 1392.81215
[11] Strominger, A.; Zhiboedov, A., Gravitational memory, BMS supertranslations and soft theorems, JHEP, 01, 086 (2016) · Zbl 1388.83072
[12] A. Strominger, Lectures on the infrared structure of gravity and gauge theory, arXiv:1703.05448 [INSPIRE]. · Zbl 1408.83003
[13] G. Compère and A. Fiorucci, Advanced lectures on general relativity, arXiv:1801.07064 [INSPIRE]. · Zbl 1419.83003
[14] F. Cachazo and A. Strominger, Evidence for a new soft graviton theorem, arXiv:1404.4091 [INSPIRE].
[15] Pasterski, S.; Strominger, A.; Zhiboedov, A., New gravitational memories, JHEP, 12, 053 (2016) · Zbl 1390.83024
[16] Campiglia, M.; Laddha, A., Asymptotic symmetries and subleading soft graviton theorem, Phys. Rev. D, 90, 124028 (2014)
[17] Flanagan, EE; Nichols, DA, Conserved charges of the extended Bondi-Metzner-Sachs algebra, Phys. Rev. D, 95, 044002 (2017)
[18] G. Compère, A. Fiorucci and R. Ruzziconi, Superboost transitions, refraction memory and super-Lorentz charge algebra, JHEP11 (2018) 200 [Erratum ibid.04 (2020) 172] [arXiv:1810.00377] [INSPIRE]. · Zbl 1405.83004
[19] Himwich, E.; Mirzaiyan, Z.; Pasterski, S., A note on the subleading soft graviton, JHEP, 04, 172 (2021) · Zbl 1462.83006
[20] Barnich, G.; Troessaert, C., Symmetries of asymptotically flat 4 dimensional spacetimes at null infinity revisited, Phys. Rev. Lett., 105, 111103 (2010)
[21] Barnich, G.; Troessaert, C., BMS charge algebra, JHEP, 12, 105 (2011) · Zbl 1306.83002
[22] Donnay, L.; Pasterski, S.; Puhm, A., Asymptotic symmetries and celestial CFT, JHEP, 09, 176 (2020) · Zbl 1454.81183
[23] Kapec, D.; Lysov, V.; Pasterski, S.; Strominger, A., Semiclassical Virasoro symmetry of the quantum gravity \(\mathcal{S} \)-matrix, JHEP, 08, 058 (2014)
[24] Kapec, D.; Mitra, P.; Raclariu, A-M; Strominger, A., 2D stress tensor for 4D gravity, Phys. Rev. Lett., 119, 121601 (2017)
[25] Pasterski, S.; Shao, S-H; Strominger, A., Flat space amplitudes and conformal symmetry of the celestial sphere, Phys. Rev. D, 96, 065026 (2017)
[26] Donnay, L.; Giribet, G.; Gonzalez, HA; Pino, M., Supertranslations and Superrotations at the black hole horizon, Phys. Rev. Lett., 116, 091101 (2016)
[27] Donnay, L.; Giribet, G.; González, HA; Pino, M., Extended symmetries at the black hole horizon, JHEP, 09, 100 (2016) · Zbl 1390.83191
[28] Donnay, L.; Marteau, C., Carrollian physics at the black hole horizon, Class. Quant. Grav., 36, 165002 (2019) · Zbl 1477.83050
[29] Hopfmüller, F.; Freidel, L., Gravity degrees of freedom on a null surface, Phys. Rev. D, 95, 104006 (2017)
[30] Wieland, W., New boundary variables for classical and quantum gravity on a null surface, Class. Quant. Grav., 34, 215008 (2017) · Zbl 1380.83103
[31] Chandrasekaran, V.; Flanagan, EE; Prabhu, K., Symmetries and charges of general relativity at null boundaries, JHEP, 11, 125 (2018) · Zbl 1404.83016
[32] Wieland, W., Null infinity as an open Hamiltonian system, JHEP, 04, 095 (2021) · Zbl 1462.83010
[33] Donnelly, W.; Freidel, L., Local subsystems in gauge theory and gravity, JHEP, 09, 102 (2016) · Zbl 1390.83016
[34] Freidel, L.; Perez, A., Quantum gravity at the corner, Universe, 4, 107 (2018)
[35] Freidel, L.; Perez, A.; Pranzetti, D., Loop gravity string, Phys. Rev. D, 95, 106002 (2017)
[36] Freidel, L.; Livine, ER, Bubble networks: framed discrete geometry for quantum gravity, Gen. Rel. Grav., 51, 9 (2019) · Zbl 1409.83063
[37] Freidel, L.; Livine, ER; Pranzetti, D., Gravitational edge modes: from Kac-Moody charges to Poincaré networks, Class. Quant. Grav., 36, 195014 (2019) · Zbl 1478.83089
[38] L. Freidel, M. Geiller and D. Pranzetti, Edge modes of gravity. Part I. Corner potentials and charges, JHEP11 (2020) 026 [arXiv:2006.12527] [INSPIRE]. · Zbl 1460.83030
[39] L. Freidel, M. Geiller and D. Pranzetti, Edge modes of gravity. Part II. Corner metric and Lorentz charges, JHEP11 (2020) 027 [arXiv:2007.03563] [INSPIRE]. · Zbl 1456.83024
[40] L. Freidel, M. Geiller and D. Pranzetti, Edge modes of gravity. Part III. Corner simplicity constraints, JHEP01 (2021) 100 [arXiv:2007.12635] [INSPIRE]. · Zbl 1459.83016
[41] W. Donnelly, L. Freidel, S.F. Moosavian and A.J. Speranza, Gravitational edge modes, coadjoint orbits, and hydrodynamics, arXiv:2012.10367 [INSPIRE].
[42] Livine, ER, Loop quantum gravity boundary dynamics and gauge theory, Class. Quant. Grav., 38, 135031 (2021) · Zbl 1481.83045
[43] Q. Chen and E.R. Livine, Loop quantum gravity’s boundary maps, arXiv:2103.08409 [INSPIRE].
[44] L. Freidel, R. Oliveri, D. Pranzetti and S. Speziale, Extended corner symmetry, charge bracket and Einstein’s equations, arXiv:2104.12881 [INSPIRE].
[45] Troessaert, C., Hamiltonian surface charges using external sources, J. Math. Phys., 57, 053507 (2016) · Zbl 1342.83019
[46] R.M. Wald and A. Zoupas, A general definition of ‘conserved quantities’ in general relativity and other theories of gravity, Phys. Rev. D61 (2000) 084027 [gr-qc/9911095] [INSPIRE]. · Zbl 1136.83317
[47] Chandrasekaran, V.; Speranza, AJ, Anomalies in gravitational charge algebras of null boundaries and black hole entropy, JHEP, 01, 137 (2021) · Zbl 1459.83025
[48] Barnich, G.; Troessaert, C., Aspects of the BMS/CFT correspondence, JHEP, 05, 062 (2010) · Zbl 1287.83043
[49] Barnich, G.; Compere, G., Surface charge algebra in gauge theories and thermodynamic integrability, J. Math. Phys., 49, 042901 (2008) · Zbl 1152.81327
[50] Barnich, G.; Troessaert, C., Comments on holographic current algebras and asymptotically flat four dimensional spacetimes at null infinity, JHEP, 11, 003 (2013) · Zbl 1342.83228
[51] Compère, G.; Fiorucci, A.; Ruzziconi, R., The Λ-BMS_4charge algebra, JHEP, 10, 205 (2020) · Zbl 1456.81215
[52] Adami, H.; Sheikh-Jabbari, MM; Taghiloo, V.; Yavartanoo, H.; Zwikel, C., Symmetries at null boundaries: two and three dimensional gravity cases, JHEP, 10, 107 (2020) · Zbl 1456.83053
[53] Ruzziconi, R.; Zwikel, C., Conservation and integrability in lower-dimensional gravity, JHEP, 04, 034 (2021) · Zbl 1462.83035
[54] Alessio, F.; Barnich, G.; Ciambelli, L.; Mao, P.; Ruzziconi, R., Weyl charges in asymptotically locally AdS_3spacetimes, Phys. Rev. D, 103, 046003 (2021)
[55] Fiorucci, A.; Ruzziconi, R., Charge algebra in Al(A)dS_nspacetimes, JHEP, 05, 210 (2021) · Zbl 1466.81032
[56] Compère, G.; Oliveri, R.; Seraj, A., The Poincaré and BMS flux-balance laws with application to binary systems, JHEP, 10, 116 (2020) · Zbl 1456.83015
[57] Kijowski, JD; Szczyrba, W., A canonical structure for classical field theories, Commun. Math. Phys., 46, 183 (1976) · Zbl 0348.49017
[58] K. Gawȩdzki, Classical origin of quantum group symmetries in Wess-Zumino-Witten conformal field theory, Commun. Math. Phys.139 (1991) 201. · Zbl 0721.58045
[59] C. Crnkovic and E. Witten, Covariant description of canonical formalism in geometrical theories, in Three hundred years of gravitation, S.W. Hawking and W. Israel., Cambridge University Press, Cambridge U.K. (1987), p. 676. · Zbl 0966.81533
[60] A. Ashtekar, L. Bombelli and O. Reula, The covariant phase space of asymptotically flat gravitational fields, in Mechanics, analysis and geometry: 200 years after lagrange, M. Francaviglia ed., North-Holland Delta Series, doi:10.1016/B978-0-444-88958-4.50021-5 Elsevier, Amsterdam The Netherlands (1991), p. 417. · Zbl 0717.53056
[61] Lee, J.; Wald, RM, Local symmetries and constraints, J. Math. Phys., 31, 725 (1990) · Zbl 0704.70013
[62] Campiglia, M.; Peraza, J., Generalized BMS charge algebra, Phys. Rev. D, 101, 104039 (2020)
[63] L. Ciambelli and R.G. Leigh, Isolated surfaces and symmetries of gravity, arXiv:2104.07643 [INSPIRE].
[64] Bonga, B.; Poisson, E., Coulombic contribution to angular momentum flux in general relativity, Phys. Rev. D, 99, 064024 (2019)
[65] Ashtekar, A.; De Lorenzo, T.; Khera, N., Compact binary coalescences: The subtle issue of angular momentum, Phys. Rev. D, 101, 044005 (2020)
[66] Elhashash, A.; Nichols, DA, Definitions of angular momentum and super angular momentum in asymptotically flat spacetimes: properties and applications to compact-binary mergers, Phys. Rev. D, 104, 024020 (2021)
[67] P.-N. Chen, M.-T. Wang, Y.-K. Wang and S.-T. Yau, Supertranslation invariance of angular momentum, arXiv:2102.03235 [INSPIRE].
[68] G. Compère and D.A. Nichols, Classical and quantized general-relativistic angular momentum, arXiv:2103.17103 [INSPIRE].
[69] Compère, G.; Long, J., Vacua of the gravitational field, JHEP, 07, 137 (2016) · Zbl 1390.83185
[70] Ashtekar, A., Asymptotic quantization of the gravitational field, Phys. Rev. Lett., 46, 573 (1981)
[71] Ashtekar, A.; Streubel, M., Symplectic geometry of radiative modes and conserved quantities at null infinity, Proc. Roy. Soc. Lond. A, 376, 585 (1981)
[72] Ciambelli, L.; Marteau, C.; Petkou, AC; Petropoulos, PM; Siampos, K., Flat holography and Carrollian fluids, JHEP, 07, 165 (2018) · Zbl 1395.81210
[73] Ciambelli, L.; Leigh, RG; Marteau, C.; Petropoulos, PM, Carroll structures, null geometry and conformal isometries, Phys. Rev. D, 100, 046010 (2019)
[74] Herfray, Y., Asymptotic shear and the intrinsic conformal geometry of null-infinity, J. Math. Phys., 61, 072502 (2020) · Zbl 1455.83011
[75] Y. Herfray, Tractor geometry of asymptotically flat space-times, arXiv:2103.10405 [INSPIRE]. · Zbl 1455.83011
[76] Reisenberger, MP, The Poisson bracket on free null initial data for gravity, Phys. Rev. Lett., 101, 211101 (2008)
[77] Reisenberger, MP, The symplectic 2-form for gravity in terms of free null initial data, Class. Quant. Grav., 30, 155022 (2013) · Zbl 1273.83024
[78] Parattu, K.; Chakraborty, S.; Majhi, BR; Padmanabhan, T., A boundary term for the gravitational action with null boundaries, Gen. Rel. Grav., 48, 94 (2016) · Zbl 1386.83018
[79] Reisenberger, MP, The Poisson brackets of free null initial data for vacuum general relativity, Class. Quant. Grav., 35, 185012 (2018) · Zbl 1409.83021
[80] Hopfmüller, F.; Freidel, L., Null conservation laws for gravity, Phys. Rev. D, 97, 124029 (2018)
[81] Oliveri, R.; Speziale, S., Boundary effects in general relativity with tetrad variables, Gen. Rel. Grav., 52, 83 (2020) · Zbl 1468.83009
[82] Campiglia, M.; Laddha, A., New symmetries for the gravitational S-matrix, JHEP, 04, 076 (2015) · Zbl 1388.83094
[83] Freidel, L.; Livine, ER; Pranzetti, D., Kinematical gravitational charge algebra, Phys. Rev. D, 101, 024012 (2020)
[84] Penna, RF, BMS invariance and the membrane paradigm, JHEP, 03, 023 (2016) · Zbl 1388.83496
[85] Penna, RF, Near-horizon BMS symmetries as fluid symmetries, JHEP, 10, 049 (2017) · Zbl 1383.83075
[86] Anderson, IM, Introduction to the variational bicomplex, Contemp. Math., 132, 51 (1992) · Zbl 0772.58013
[87] François, J., Bundle geometry of the connection space, covariant Hamiltonian formalism, the problem of boundaries in gauge theories, and the dressing field method, JHEP, 03, 225 (2021) · Zbl 1461.83058
[88] R.K. Sachs, Gravitational waves in general relativity. 8. Waves in asymptotically flat space-times, Proc. Roy. Soc. Lond. A270 (1962) 103. · Zbl 0101.43605
[89] H. Bondi, M.G.J. van der Burg and A.W.K. Metzner, Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems, Proc. Roy. Soc. Lond. A269 (1962) 21 [INSPIRE]. · Zbl 0106.41903
[90] Barnich, G.; Troessaert, C., Finite BMS transformations, JHEP, 03, 167 (2016) · Zbl 1388.83514
[91] L. Blanchet, Radiative gravitational fields in general relativity II. Asymptotic behaviour at future null infinity, Proc. Roy. Soc. London A409 (1987) 383. · Zbl 0658.35084
[92] Blanchet, L.; Compère, G.; Faye, G.; Oliveri, R.; Seraj, A., Multipole expansion of gravitational waves: from harmonic to Bondi coordinates, JHEP, 02, 029 (2021) · Zbl 1460.83021
[93] de Haro, S.; Solodukhin, SN; Skenderis, K., Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys., 217, 595 (2001) · Zbl 0984.83043
[94] Papadimitriou, I.; Skenderis, K., Thermodynamics of asymptotically locally AdS spacetimes, JHEP, 08, 004 (2005)
[95] Compere, G.; Marolf, D., Setting the boundary free in AdS/CFT, Class. Quant. Grav., 25, 195014 (2008) · Zbl 1151.83305
[96] Freidel, L.; Hopfmüller, F.; Riello, A., Asymptotic renormalization in flat space: symplectic potential and charges of electromagnetism, JHEP, 10, 126 (2019) · Zbl 1427.81193
[97] A. Ashtekar, L. Bombelli and O. Reula, The covariant phase space of asymptotically flat gravitational fields, in Analysis, geometry and mechanics: 200 years after Lagrange. M. Francaviglia and D. Holm eds., North-Holland, The Netherlands (1991)- · Zbl 0717.53056
[98] Barnich, G.; Brandt, F., Covariant theory of asymptotic symmetries, conservation laws and central charges, Nucl. Phys. B, 633, 3 (2002) · Zbl 0995.81054
[99] Rangamani, M., Gravity and hydrodynamics: lectures on the fluid-gravity correspondence, Class. Quant. Grav., 26, 224003 (2009) · Zbl 1181.83005
[100] R. Ruzziconi, On the Various Extensions of the BMS Group, Ph.D. thesis, Université libre de Bruxelles, Bruxelles (2020), arXiv:2009.01926 [INSPIRE].
[101] Barnich, G.; Lambert, PH, A note on the newman-unti group and the bms charge algebra in terms of Newman-Penrose coefficients, Adv. Math. Phys., 2012, 1 (2012) · Zbl 1266.83132
[102] Ciambelli, L.; Leigh, RG, Weyl connections and their role in holography, Phys. Rev. D, 101, 086020 (2020)
[103] Barnich, G.; Mao, P.; Ruzziconi, R., BMS current algebra in the context of the Newman-Penrose formalism, Class. Quant. Grav., 37, 095010 (2020) · Zbl 1479.83179
[104] L. Freidel and D. Pranzetti, Gravity from symmetry, to appear (2021). · Zbl 1459.83016
[105] Hawking, SW; Perry, MJ; Strominger, A., Superrotation charge and supertranslation hair on black holes, JHEP, 05, 161 (2017) · Zbl 1380.83143
[106] Barnich, G.; Ruzziconi, R., Coadjoint representation of the BMS group on celestial Riemann surfaces, JHEP, 06, 079 (2021) · Zbl 1466.81028
[107] Ashtekar, A.; Engle, J.; Sloan, D., Asymptotics and Hamiltonians in a first order formalism, Class. Quant. Grav., 25, 095020 (2008) · Zbl 1141.83005
[108] A. Ashtekar and B. Krishnan, Isolated and dynamical horizons and their applications, Living Rev. Rel.7 (2004) 10 [gr-qc/0407042] [INSPIRE]. · Zbl 1071.83036
[109] Díaz-Polo, J.; Pranzetti, D., Isolated horizons and black hole entropy in loop quantum gravity, SIGMA, 8, 048 (2012) · Zbl 1269.53080
[110] Godazgar, H.; Godazgar, M.; Pope, CN, New dual gravitational charges, Phys. Rev. D, 99, 024013 (2019) · Zbl 1427.83015
[111] Godazgar, H.; Godazgar, M.; Perry, MJ, Hamiltonian derivation of dual gravitational charges, JHEP, 09, 084 (2020) · Zbl 1454.83134
[112] Oliveri, R.; Speziale, S., A note on dual gravitational charges, JHEP, 12, 079 (2020) · Zbl 1457.83011
[113] De Paoli, E.; Speziale, S., A gauge-invariant symplectic potential for tetrad general relativity, JHEP, 07, 040 (2018) · Zbl 1395.83046
[114] Jacobson, T.; Mohd, A., Black hole entropy and Lorentz-diffeomorphism Noether charge, Phys. Rev. D, 92, 124010 (2015)
[115] Prabhu, K., The first law of black hole mechanics for fields with internal gauge freedom, Class. Quant. Grav., 34, 035011 (2017) · Zbl 1358.83058
[116] G. Barnich, P. Mao and R. Ruzziconi, Conserved currents in the Cartan formulation of general relativity, in About Various Kinds of Interactions: Workshop in honour of ProfeSSOR Philippe Spindel, June 4-5, Mons, Belgium (2015), arXiv:1611.01777 [INSPIRE].
[117] Frodden, E.; Hidalgo, D., Surface charges for gravity and electromagnetism in the first order formalism, Class. Quant. Grav., 35, 035002 (2018) · Zbl 1382.83009
[118] Gomes, H.; Riello, A., Unified geometric framework for boundary charges and particle dressings, Phys. Rev. D, 98, 025013 (2018)
[119] Margalef-Bentabol, J.; Villaseñor, EJS, Geometric formulation of the covariant phase space methods with boundaries, Phys. Rev. D, 103, 025011 (2021)
[120] J.F.B. G., J. Margalef-Bentabol, V. Varo and E.J.S. Villaseñor, Covariant phase space for gravity with boundaries: metric vs tetrad formulations, arXiv:2103.06362 [INSPIRE].
[121] De Paoli, E.; Speziale, S., Sachs’ free data in real connection variables, JHEP, 11, 205 (2017) · Zbl 1383.83008
[122] Godazgar, H.; Godazgar, M.; Perry, MJ, Asymptotic gravitational charges, Phys. Rev. Lett., 125, 101301 (2020) · Zbl 1454.83134
[123] Compère, G., Infinite towers of supertranslation and superrotation memories, Phys. Rev. Lett., 123, 021101 (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.