×

ADER scheme for incompressible Navier-Stokes equations on overset grids with a compact transmission condition. (English) Zbl 07568532

Summary: A space-time Finite Volume method is devised to simulate incompressible viscous flows in an evolving domain. Inspired by the ADER method (based on a Finite-Element-prediction/Finite-Volume-correction approach), the Navier-Stokes equations are discretized onto a space-time overset grid which is able to take into account both the shape of a possibly moving object and the evolution of the domain. A compact transmission condition is employed in order to mutually exchange information from one mesh to the other. The resulting method is second order accurate in space and time for both velocity and pressure. The accuracy and efficiency of the method are tested through reference simulations.

MSC:

76Mxx Basic methods in fluid mechanics
65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
65Nxx Numerical methods for partial differential equations, boundary value problems

Software:

CMPGRD
Full Text: DOI

References:

[1] Hirt, C. W.; Amsden, A. A.; Cook, J., An arbitrary Lagrangian-Eulerian computing method for all flow speeds, J. Comput. Phys., 14, 3, 227-253 (1974) · Zbl 0292.76018
[2] Duarte, F.; Gormaz, R.; Natesan, S., Arbitrary Lagrangian-Eulerian method for Navier-Stokes equations with moving boundaries, Comput. Methods Appl. Mech. Eng., 193, 45-47, 4819-4836 (2004) · Zbl 1112.76388
[3] Gibou, F.; Fedkiw, R. P.; Cheng, L.-T.; Kang, M., A second-order-accurate symmetric discretization of the Poisson equation on irregular domains, J. Comput. Phys., 176, 1, 205-227 (2002) · Zbl 0996.65108
[4] Mittal, R.; Iaccarino, G., Immersed boundary methods, Annu. Rev. Fluid Mech., 37, 239-261 (2005) · Zbl 1117.76049
[5] Angot, P.; Bruneau, C.-H.; Fabrie, P., A penalization method to take into account obstacles in incompressible viscous flows, Numer. Math., 81, 4, 497-520 (1999) · Zbl 0921.76168
[6] Glowinski, R.; Pan, T.-W.; Periaux, J., A fictitious domain method for Dirichlet problem and applications, Comput. Methods Appl. Mech. Eng., 111, 3-4, 283-303 (1994) · Zbl 0845.73078
[7] Peskin, C. S., The immersed boundary method, Acta Numer., 11, 479-517 (2002) · Zbl 1123.74309
[8] Abgrall, R.; Beaugendre, H.; Dobrzynski, C., An immersed boundary method using unstructured anisotropic mesh adaptation combined with level-sets and penalization techniques, J. Comput. Phys., 257, 83-101 (2014) · Zbl 1349.76580
[9] Volkov, E., The method of composite meshes for finite and infinite regions, Autom. Programming, Numer. Methods Funct. Analysis, 96, 96, 145 (1970) · Zbl 0207.09502
[10] Benek, J.; Buning, P.; Steger, J., A 3-d Chimera grid embedding technique, (7th Computational Physics Conference (1985)), 1523
[11] Meakin, R., Chapter 11: composite overset structured grids, (Thompson, J. F.; Soni, B. K.; Weatherill, N. P., Handbook of Grid Generation (1999), CRC)
[12] Petersson, N. A., Hole-cutting for three-dimensional overlapping grids, SIAM J. Sci. Comput., 21, 2, 646-665 (1999) · Zbl 0947.65128
[13] Starius, G., Constructing orthogonal curvilinear meshes by solving initial value problems, Numer. Math., 28, 1, 25-48 (1977) · Zbl 0363.65072
[14] Starius, G., On composite mesh difference methods for hyperbolic differential equations, Numer. Math., 35, 3, 241-255 (1980) · Zbl 0475.65059
[15] Starius, G., Composite mesh difference methods for elliptic boundary value problems, Numer. Math., 28, 2, 243-258 (1977) · Zbl 0363.65078
[16] Banks, J. W.; Henshaw, W. D.; Kapila, A. K.; Schwendeman, D. W., An added-mass partition algorithm for fluid-structure interactions of compressible fluids and nonlinear solids, J. Comput. Phys., 305, 1037-1064 (2016) · Zbl 1349.76428
[17] Banks, J. W.; Henshaw, W. D.; Sjögreen, B., A stable FSI algorithm for light rigid bodies in compressible flow, J. Comput. Phys., 245, 399-430 (2013) · Zbl 1349.76429
[18] Schwendeman, D.; Kapila, A.; Henshaw, W., A study of detonation diffraction and failure for a model of compressible two-phase reactive flow, Combust. Theory Model., 14, 3, 331-366 (2010) · Zbl 1197.80055
[19] Banks, J. W.; Schwendeman, D. W.; Kapila, A. K.; Henshaw, W. D., A high-resolution Godunov method for compressible multi-material flow on overlapping grids, J. Comput. Phys., 223, 1, 262-297 (2007) · Zbl 1163.76032
[20] Chesshire, G.; Henshaw, W. D., Composite overlapping meshes for the solution of partial differential equations, J. Comput. Phys., 90, 1, 1-64 (1990) · Zbl 0709.65090
[21] Henshaw, W. D., Cgins reference manual: an overture solver for the incompressible Navier-Stokes equations on composite overlapping grids, (Centre for Applied Scientific Computing (2012))
[22] Chiu, I.-T.; Meakin, R., On automating domain connectivity for overset grids, (33rd Aerospace Sciences Meeting and Exhibit (1995)), 854
[23] Guerrero, J., Overset composite grids for the simulation of complex moving geometries (2006), DICAT, University of Genoa: DICAT, University of Genoa Italy
[24] Wang, Z., A fully conservative interface algorithm for overlapped grids, J. Comput. Phys., 122, 1, 96-106 (1995) · Zbl 0835.76081
[25] Liou, M.-S.; Zheng, Y., A novel approach of three-dimensional hybrid grid methodology: Part 2. Flow solution, Comput. Methods Appl. Mech. Eng., 192, 37-38, 4173-4193 (2003) · Zbl 1178.76250
[26] Henshaw, W. D., On multigrid for overlapping grids, SIAM J. Sci. Comput., 26, 5, 1547-1572 (2005) · Zbl 1076.65113
[27] Houzeaux, G.; Cajas, J.; Discacciati, M.; Eguzkitza, B.; Gargallo-Peiró, A.; Rivero, M.; Vázquez, M., Domain decomposition methods for domain composition purpose: chimera, overset, gluing and sliding mesh methods, Arch. Comput. Methods Eng., 24, 4, 1033-1070 (2017) · Zbl 1437.65220
[28] Kao, K.-H.; Liou, M.-S., Advance in overset grid schemes-from chimera to dragon grids, AIAA J., 33, 10, 1809-1815 (1995) · Zbl 0856.76060
[29] Bergmann, M.; Fondanèche, A.; Iollo, A., A fully eulerian finite volume method for the simulation of fluid-structure interactions on amr enabled quadtree grids, (International Conference on Finite Volumes for Complex Applications (2020), Springer), 765-772 · Zbl 1453.65244
[30] Chorin, A. J., Numerical solution of the Navier-Stokes equations, Math. Comput., 22, 104, 745-762 (1968) · Zbl 0198.50103
[31] Temam, R., Sur l’approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (ii), Arch. Ration. Mech. Anal., 33, 5, 377-385 (1969) · Zbl 0207.16904
[32] Dumbser, M.; Boscheri, W.; Semplice, M.; Russo, G., Central weighted eno schemes for hyperbolic conservation laws on fixed and moving unstructured meshes, SIAM J. Sci. Comput., 39, 6, A2564-A2591 (2017) · Zbl 1377.65115
[33] Titarev, V. A.; Toro, E. F., ADER schemes for three-dimensional non-linear hyperbolic systems, J. Comput. Phys., 204, 2, 715-736 (2005) · Zbl 1060.65641
[34] Titarev, V. A.; Toro, E. F., ADER: arbitrary high order Godunov approach, J. Sci. Comput., 17, 1, 609-618 (2002) · Zbl 1024.76028
[35] Castro, C. E.; Toro, E. F., Solvers for the high-order Riemann problem for hyperbolic balance laws, J. Comput. Phys., 227, 4, 2481-2513 (2008) · Zbl 1148.65066
[36] Bergmann, M.; Carlino, M. G.; Iollo, A., Second order ADER scheme for unsteady advection-diffusion on moving overset grids with a compact transmission condition, SIAM J. Sci. Comput., 44, 1, A524-A553 (2022) · Zbl 1489.65127
[37] Bertolazzi, E.; Manzini, G., A cell-centered second-order accurate finite volume method for convection-diffusion problems on unstructured meshes, Math. Models Methods Appl. Sci., 14, 08, 1235-1260 (2004) · Zbl 1079.65113
[38] Coudière, Y.; Vila, J.-P.; Villedieu, P., Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem, ESAIM: Math. Model. Numer. Analysis, 33, 3, 493-516 (1999) · Zbl 0937.65116
[39] Raeli, A.; Bergmann, M.; Iollo, A., A finite-difference method for the variable coefficient Poisson equation on hierarchical cartesian meshes, J. Comput. Phys., 355, 59-77 (2018) · Zbl 1380.65328
[40] Berger, M. J.; Oliger, J., Adaptive mesh refinement for hyperbolic partial differential equations, J. Comput. Phys., 53, 3, 484-512 (1984) · Zbl 0536.65071
[41] Rai, M. M., A conservative treatment of zonal boundaries for Euler equation calculations, J. Comput. Phys., 62, 2, 472-503 (1986) · Zbl 0619.65085
[42] Moon, Y.; Liou, M.-S., Conservative treatment of boundary interfaces for overlaid grids and multi-level grid adaptations, (9th Computational Fluid Dynamics Conference (1989)), 1980
[43] Wright, J. A.; Shyy, W., A pressure-based composite grid method for the Navier-Stokes equations, J. Comput. Phys., 107, 2, 225-238 (1993) · Zbl 0777.76065
[44] Atta, E., Component-adaptive grid interfacing, (19th Aerospace Sciences Meeting (1981)), 382
[45] Kreiss, B., Construction of a curvilinear grid, SIAM J. Sci. Stat. Comput., 4, 2, 270-279 (1983) · Zbl 0536.65086
[46] Benek, J.; Steger, J.; Dougherty, F. C., A flexible grid embedding technique with application to the Euler equations, (6th Computational Fluid Dynamics Conference. 6th Computational Fluid Dynamics Conference, Danvers (1983)), 1944
[47] Meng, F.; Banks, J.; Henshaw, W.; Schwendeman, D., Fourth-order accurate fractional-step imex schemes for the incompressible Navier-Stokes equations on moving overlapping grids, Comput. Methods Appl. Mech. Eng., 366, Article 113040 pp. (2020) · Zbl 1442.76079
[48] Mittal, K.; Dutta, S.; Fischer, P., Nonconforming Schwarz-spectral element methods for incompressible flow, Comput. Fluids, 191, Article 104237 pp. (2019) · Zbl 1519.76231
[49] Sharma, A.; Ananthan, S.; Sitaraman, J.; Thomas, S.; Sprague, M. A., Overset meshes for incompressible flows: on preserving accuracy of underlying discretizations, J. Comput. Phys., 428, Article 109987 pp. (2021) · Zbl 07511424
[50] Roget, B.; Sitaraman, J., Robust and efficient overset grid assembly for partitioned unstructured meshes, J. Comput. Phys., 260, 1-24 (2014) · Zbl 1349.65669
[51] Mittal, R.; Dong, H.; Bozkurttas, M.; Najjar, F.; Vargas, A.; Von Loebbecke, A., A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries, J. Comput. Phys., 227, 10, 4825-4852 (2008) · Zbl 1388.76263
[52] Hidalgo, A.; Dumbser, M., ADER schemes for nonlinear systems of stiff advection-diffusion-reaction equations, J. Sci. Comput., 48, 1, 173-189 (2011) · Zbl 1221.65231
[53] Boscheri, W.; Dumbser, M., Arbitrary-Lagrangian-Eulerian one-step WENO finite volume schemes on unstructured triangular meshes, Commun. Comput. Phys., 14, 5, 1174-1206 (2013) · Zbl 1388.65075
[54] Nagy, G. B.; Ortiz, O. E.; Reula, O. A., The behavior of hyperbolic heat equations’ solutions near their parabolic limits, J. Math. Phys., 35, 8, 4334-4356 (1994) · Zbl 0810.35051
[55] Toro, E. F.; Montecinos, G. I., Advection-diffusion-reaction equations: hyperbolization and high-order ADER discretizations, SIAM J. Sci. Comput., 36, 5, A2423-A2457 (2014) · Zbl 1307.65117
[56] Bruneau, C.-H.; Saad, M., The 2d lid-driven cavity problem revisited, Comput. Fluids, 35, 3, 326-348 (2006) · Zbl 1099.76043
[57] Kawamura, T.; Takami, H.; Kuwahara, K., New higher-order upwind scheme for incompressible Navier-Stokes equations, (Ninth International Conference on Numerical Methods in Fluid Dynamics (1985), Springer), 291-295 · Zbl 0587.76042
[58] Leonard, B., The ultimate conservative difference scheme applied to unsteady one-dimensional advection, Comput. Methods Appl. Mech. Eng., 88, 1, 17-74 (1991) · Zbl 0746.76067
[59] Ghia, U.; Ghia, K. N.; Shin, C., High-re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J. Comput. Phys., 48, 3, 387-411 (1982) · Zbl 0511.76031
[60] Vreman, A., A staggered overset grid method for resolved simulation of incompressible flow around moving spheres, J. Comput. Phys., 333, 269-296 (2017)
[61] Jin, G.; Braza, M., A nonreflecting outlet boundary condition for incompressible unsteady Navier-Stokes calculations, J. Comput. Phys., 107, 2, 239-253 (1993) · Zbl 0777.76072
[62] Ploumhans, P.; Winckelmans, G., Vortex methods for high-resolution simulations of viscous flow past bluff bodies of general geometry, J. Comput. Phys., 165, 2, 354-406 (2000) · Zbl 1006.76068
[63] Bergmann, M., Optimisation aérodynamique par réduction de modele pod et contrôle optimal, application au sillage laminaire d’un cylindre circulaire (2004), Institut National Polytechnique de Lorraine
[64] Bergmann, M.; Iollo, A., Modeling and simulation of fish-like swimming, J. Comput. Phys., 230, 2, 329-348 (2011) · Zbl 1416.76357
[65] Bergmann, M.; Hovnanian, J.; Iollo, A., An accurate cartesian method for incompressible flows with moving boundaries, Commun. Comput. Phys., 15, 5, 1266-1290 (2014) · Zbl 1373.76156
[66] Braza, M.; Chassaing, P.; Minh, H. H., Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder, J. Fluid Mech., 165, 79-130 (1986) · Zbl 0596.76047
[67] He, J.-W.; Glowinski, R.; Metcalfe, R.; Nordlander, A.; Periaux, J., Active control and drag optimization for flow past a circular cylinder: I. oscillatory cylinder rotation, J. Comput. Phys., 163, 1, 83-117 (2000) · Zbl 0977.76021
[68] Henderson, R. D., Details of the drag curve near the onset of vortex shedding, Phys. Fluids, 7, 9, 2102-2104 (1995)
[69] Koumoutsakos, P.; Leonard, A., High-resolution simulations of the flow around an impulsively started cylinder using vortex methods, J. Fluid Mech., 296, 1-38 (1995) · Zbl 0849.76061
[70] Coquerelle, M.; Cottet, G.-H., A vortex level set method for the two-way coupling of an incompressible fluid with colliding rigid bodies, J. Comput. Phys., 227, 21, 9121-9137 (2008) · Zbl 1146.76038
[71] Busto, S.; Chiocchetti, S.; Dumbser, M.; Gaburro, E.; Peshkov, I., High order ADER schemes for continuum mechanics, Front. Phys., 8, 32 (2020)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.