×

A fully Eulerian finite volume method for the simulation of fluid-structure interactions on AMR enabled quadtree grids. (English) Zbl 1453.65244

Klöfkorn, Robert (ed.) et al., Finite volumes for complex applications IX – methods, theoretical aspects, examples. FVCA 9, Bergen, Norway, June 15–19, 2020. In 2 volumes. Volume I and II. Cham: Springer. Springer Proc. Math. Stat. 323, 765-772 (2020).
The authors propose a finite-volume scheme for solving a single-continuum model of fluid-structure interactions. The numerical Rusanov (Local Lax-Friedrichs) flux is introduced to compute the convective/transport flux. In this formulation, the stabilization is simply performed according to the normal face-center velocity without considering the velocity of the waves which propagate inside the material. The finite volume scheme is stable only for moderately stiff material or for high viscosities. An example of application is presented and detailed.
For the entire collection see [Zbl 1445.65003].

MSC:

65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
65N08 Finite volume methods for boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
74S10 Finite volume methods applied to problems in solid mechanics
74B20 Nonlinear elasticity
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Taymans, C.: Solving incompressible Navier-Stokes equations on Octree grids: towards application to wind turbine blade modelling. Doctoral dissertation, Bordeaux (2018)
[2] Moireau, P., Xiao, N., Astorino, M., Figueroa, C.A., Chapelle, D., Taylor, C.A., Gerbeau, J.F.: External tissue support and fluid-structure simulation in blood flows. Biomech. Model. Mechanobiol. 11(1-2), 1-18 (2012) · doi:10.1007/s10237-011-0289-z
[3] Nitikitpaiboon, C., Bathe, K.J.: An arbitrary Lagrangian-Eulerian velocity potential formulation for fluid-structure interaction. Comput. Struct. 47(4-5), 871-891 (1993) · Zbl 0800.73296 · doi:10.1016/0045-7949(93)90364-J
[4] Turek, S., & Hron, J.: Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow. In: Fluid-Structure Interaction, pp. 371-385 (2006). Springer, Berlin, Heidelberg · Zbl 1323.76049
[5] Tezduyar, T.E., Behr, M., Mittal, S., Liou, J.: A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure: I. The concept and preliminary tests. Comput. Methods Appl. Mech. Eng. 94(3), 339-351 (1992) · Zbl 0745.76044
[6] Tezduyar, T.E., Behr, M., Mittal, S., Liou, J.: A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput. Methods Appl. Mech. Eng. 94(3), 353-371 (1992) · Zbl 0745.76045
[7] Peskin, C.S.: Numerical analysis of blood flow in the heart. J. Comput. Phys. 25(3), 220-252 (1977) · Zbl 0403.76100 · doi:10.1016/0021-9991(77)90100-0
[8] Peskin, C.S.: The fluid dynamics of heart valves: experimental, theoretical, and computational methods. Annu. Rev. Fluid Mech. 14(1), 235-259 (1982) · Zbl 0488.76129 · doi:10.1146/annurev.fl.14.010182.001315
[9] Udaykumar, H.S., Shyy, W., Rao, M.M.: Elafint: a mixed Eulerian-Lagrangian method for fluid flows with complex and moving boundaries. Int. J. Numer. Methods Fluids 22(8), 691-712 (1996) · Zbl 0887.76059 · doi:10.1002/(SICI)1097-0363(19960430)22:8<691::AID-FLD371>3.0.CO;2-U
[10] Angot, P., Bruneau, C.H., Fabrie, P.: A penalization method to take into account obstacles in incompressible viscous flows. Numer. Math. 81(4), 497-520 (1999) · Zbl 0921.76168 · doi:10.1007/s002110050401
[11] Chorin, A.J.: Numerical solution of the Navier-Stokes equations. Math. Comput. 22(104), 745-762 (1968) · Zbl 0198.50103 · doi:10.1090/S0025-5718-1968-0242392-2
[12] Temam, R.: Sur l’approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II). Arch. Ration. Mech. Anal. 33(5), 377-385 (1969) · Zbl 0207.16904 · doi:10.1007/BF00247696
[13] Bergmann, M., Hovnanian, J., Iollo, A.: An accurate cartesian method for incompressible flows with moving boundaries. Commun. Comput. Phys. 15(5), 1266-1290 (2014) · Zbl 1373.76156 · doi:10.4208/cicp.220313.111013a
[14] Coudière, Y., Vila, J.P., Villedieu, P.: Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem. ESAIM: Math. Model. Numer. Anal. 33(3), 493-516 (1999) · Zbl 0937.65116
[15] Delcourte, S., Domelevo, K., Omnes, P.: Discrete Duality Finite Volume Method for Second Order Elliptic Problems. Hermes Science publishing, pp. 447-458 (2005) · Zbl 1422.65338
[16] Semplice, M., Coco, A., Russo, G.: Adaptive mesh refinement for hyperbolic systems based on third-order compact WENO reconstruction. J. Sci. Comput. 66(2), 692-724 (2016) · Zbl 1335.65077 · doi:10.1007/s10915-015-0038-z
[17] Sugiyama, K., Ii, S., Takeuchi, S., Takagi, S., Matsumoto, Y.: A full Eulerian finite difference approach for solving fluid-structure coupling problems. J. Comput. Phys. 230(3), 596-627 (2011) · Zbl 1283.74010 · doi:10.1016/j.jcp.2010.09.032
[18] Deborde, J.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.