×

Geometric, algebraic and topological combinatorics. Abstracts from the workshop held December 10–15, 2023. (English) Zbl 07921233

Summary: The 2023 Oberwolfach meeting “Geometric, Algebraic, and Topological Combinatorics” was organized by Gil Kalai (Jerusalem), Isabella Novik (Seattle), Francisco Santos (Santander), and Volkmar Welker (Marburg). It covered a wide variety of aspects of Discrete Geometry, Algebraic Combinatorics with geometric flavor, and Topological Combinatorics. Some of the highlights of the conference were (1) Federico Ardila and Tom Braden discussed recent exciting developments in the intersection theory of matroids; (2) Stavros Papadakis and Vasiliki Petrotou presented their proof of the Lefschetz property for spheres, and, more generally, for pseudomanifolds and cycles (this second part is joint with Karim Adiprasito); (3) Gaku Liu reported on his joint work with Spencer Backman that establishes the existence of a regular unimodular triangulation of an arbitrary matroid base polytope.

MSC:

05-06 Proceedings, conferences, collections, etc. pertaining to combinatorics
00B05 Collections of abstracts of lectures
00B25 Proceedings of conferences of miscellaneous specific interest
05Exx Algebraic combinatorics
52B20 Lattice polytopes in convex geometry (including relations with commutative algebra and algebraic geometry)
52B40 Matroids in convex geometry (realizations in the context of convex polytopes, convexity in combinatorial structures, etc.)
52C40 Oriented matroids in discrete geometry
57Qxx PL-topology
90C57 Polyhedral combinatorics, branch-and-bound, branch-and-cut
Full Text: DOI

References:

[1] R.M. Adin, A new cubical h-vector, Discrete Math. 157 (1996), 3-14. · Zbl 0861.52007
[2] C.A. Athanasiadis, Face numbers of barycentric subdivisions of cubical complexes, Israel J. Math. 246 (2021), 423-439. · Zbl 1492.05167
[3] C.A. Athanasiadis and K. Kalampogia-Evangelinou, Chain enumeration, partition lattices and polynomials with only real roots, Combinatorial Theory 3 (2023), Article # 12, 21pp. · Zbl 1508.05003
[4] C.A. Athanasiadis and K. Kalampogia-Evangelinou, Two classes of posets with real-rooted chain polynomials, arXiv:2307.04839.
[5] P. Brändén, Counterexamples to the Neggers-Stanley conjecture, Electron. Res. Announc. Amer. Math. Soc. 10 (2004), 155-158 (electronic). · Zbl 1068.06002
[6] P. Brändén, Unimodality, log-concavity, real-rootedness and beyond, in Handbook of Com-binatorics (M. Bona, ed.), CRC Press, 2015, pp. 437-483. · Zbl 1327.05051
[7] P. Brändén and L. Saud Maia Leite, Chain polynomials of generalized paving matroids, in preparation.
[8] F. Brenti, Unimodal, log-concave and Pólya frequency sequences in combinatorics, Mem. Amer. Math. Soc. 81 (1989), no. 413, pp. viii+106. · Zbl 0697.05011
[9] F. Brenti and V. Welker, f -vectors of barycentric subdivisions, Math. Z. 259 (2008), 849-865. · Zbl 1158.52013
[10] J. Neggers, Representations of finite partially ordered sets, J. Comb. Inform. Syst. Sci. 3 (1978), 113-133. · Zbl 0409.06001
[11] Arseniy Akopyan, Sergey Avvakumov and Roman Karasev, Convex fair partitions into an arbitrary number of pieces, preprint, February 2023, 16 pages, arXiv:1804.03057v11.
[12] David Avis, Nonpartitionable point sets, Inform. Process. Lett. 19 (1984), no. 3, 125-129. · Zbl 0564.51007
[13] Imre Bárány, Pavle Blagojević, and András Szűcs, Equipartitioning by a convex 3-fan, Adv. Math. 223 (2010), no. 2, 579-593. · Zbl 1190.52001
[14] Pavle V. M. Blagojević, Jaime Calles Loperena, Michael C. Crabb, and Aleksandra S. Dim-itrijević Blagojević, Topology of the Grünbaum-Hadwiger-Ramos problem for mass assign-ments, Topol. Methods Nonlinear Anal., 61 (2023), 107-133. · Zbl 1540.55009
[15] Pavle V. M. Blagojević and Michael C. Crabb, Many partitions of mass assignments, preprint, March 2023, 50 pages, arXiv:2303.01085v1.
[16] Pavle V. M. Blagojević, Michael C. Crabb, Tatiana Levinson, Nandakumar & Ramana-Rao for vector bundles, in preparation.
[17] Pavle V. M. Blagojević, Florian Frick, Albert Haase, and Günter M. Ziegler, Topology of the Grünbaum-Hadwiger-Ramos hyperplane mass partition problem, Trans. Amer. Math. Soc. 370 (2018), no. 10, 6795-6824. · Zbl 1396.52011
[18] Pavle V. M. Blagojević and Nikola Sadovek, Convex Equipartitions inspired by the little cubes operad, preprint, May 2023, 31 pages, arXiv:2305.10711v1.
[19] Pavle V. M. Blagojević and Pablo Soberón, Thieves can make sandwiches, Bull. Lond. Math. Soc. 50 (2018), no. 1, 108-123. · Zbl 1390.52008
[20] Pavle V. M. Blagojević and Günter M. Ziegler, Convex equipartitions via equivariant ob-struction theory, Israel J. Math. 200 (2014), no. 1, 49-77. · Zbl 1305.52005
[21] Branko Grünbaum, Partitions of mass-distributions and of convex bodies by hyperplanes, Pacific J. Math. 10 (1960), 1257-1261. · Zbl 0101.14603
[22] Hugo Hadwiger, Simultane Vierteilung zweier Körper, Arch. Math. 17 (1966), 274-278. · Zbl 0137.41501
[23] Tatiana Levinson Convex partitions of vector bundles and fibrewise configuration spaces, PhD thesis, Freie Universität Berlin, 2023.
[24] Roman Karasev, Alfredo Hubard, and Boris Aronov, Convex equipartitions: the spicy chicken theorem, Geom. Dedicata 170 (2014), 263-279. · Zbl 1301.52010
[25] Nevena Palić, Grassmannians, measure partitions, and waists of spheres, PhD thesis, Freie Universität Berlin, 2018.
[26] Edgar A. Ramos, Equipartition of mass distributions by hyperplanes, Discrete Comput. Geom. 15 (1996), no. 2, 147-167. · Zbl 0843.68120
[27] Pablo Soberón, Balanced convex partitions of measures in R d , Mathematika 58 (2012), no. 1, 71-76. References · Zbl 1267.28005
[28] J. G. Basterfield and L. M. Kelly, A characterization of sets of n points which determine n hyperplanes, Proc. Cambridge Philos. Soc. 64 (1968), 585-588. MR 233719 · Zbl 0183.49602
[29] Anders Björner and Torsten Ekedahl, On the shape of Bruhat intervals, Ann. of Math. (2) 170 (2009), no. 2, 799-817. MR 2552108 · Zbl 1226.05268
[30] Tom Braden, June Huh, Jacob P. Matherne, Nicholas Proudfoot, and Botong Wang, A semi-small decomposition of the Chow ring of a matroid, Adv. Math. 409 (2022), Paper No. 108646, 49 pp. · Zbl 1509.14012
[31] Singular Hodge theory for combinatorial geometries, arXiv:2010.06088.
[32] N. G. de Bruijn and P. Erdős, On a combinatorial problem, Indagationes Math. 10 (1948), 421-423.
[33] Thomas A. Dowling and Richard M. Wilson, The slimmest geometric lattices, Trans. Amer. Math. Soc. 196 (1974), 203-215. · Zbl 0289.05020
[34] Whitney number inequalities for geometric lattices, Proc. Amer. Math. Soc. 47 (1975), 504-512. · Zbl 0297.05010
[35] June Huh and Botong Wang, Enumeration of points, lines, planes, etc, Acta Math. 218 (2017), no. 2, 297-317. References · Zbl 1386.05021
[36] K. Adiprasito, S. Papadakis, V. Petrotou, J. Steinmeyer, Beyond positivity in Ehrhart the-ory, Preprint, 2022, https://doi.org/10.48550/arXiv.2210.10734. · doi:10.48550/arXiv.2210.10734
[37] E. Bajo, B. Braun, G. Codenotti, J. Hofscheier, A. Vindas-Meléndez, Lo-cal h * -polynomials for one-row Hermite normal form simplices, Preprint, 2023, https://doi.org/10.48550/arXiv.2309.01186. References · doi:10.48550/arXiv.2309.01186.References
[38] Margaret M. Bayer. The cd-index: a survey. In Polytopes and discrete geometry, volume 764 of Contemp. Math., pages 1-19. Amer. Math. Soc., 2021. · Zbl 1468.05001
[39] Nantel Bergeron, Stefan Mykytiuk, Frank Sottile, and Stephanie van Willigenburg. Non-commutative Pieri operators on posets. J. Combin. Theory Ser. A, 91(1-2):84-110, 2000. · Zbl 0969.05064
[40] Louis J. Billera, Richard Ehrenborg, and Margaret Readdy. The c-2d-index of oriented matroids. J. Combin. Theory Ser. A, 80(1):79-105, 1997. · Zbl 0886.05043
[41] Anders Björner. Shellable and Cohen-Macaulay partially ordered sets. Trans. Amer. Math. Soc., 260(1):159-183, 1980. · Zbl 0441.06002
[42] Anders Björner, Michel Las Vergnas, Bernd Sturmfels, Neil White, and Günter M. Ziegler. Oriented Matroids. Encyclopedia of Mathematics and its Applications, Volume 46. Cam-bridge University Press, second edition, 1999. · Zbl 0944.52006
[43] Marcus du Sautoy and Fritz J. Grunewald. Analytic properties of zeta functions and sub-group growth. Ann. of Math. (2), 152(3):793-833, 2000. · Zbl 1006.11051
[44] Richard Ehrenborg. The r-signed Birkhoff transform. Discrete Math., 344(2), 2021. · Zbl 1491.06018
[45] Fritz J. Grunewald, Daniel M. Segal, and Geoff C. Smith. Subgroups of finite index in nilpotent groups. Invent. Math., 93(1):185-223, 1988. · Zbl 0651.20040
[46] Lukas Kühne and Joshua Maglione. On the geometry of flag Hilbert-Poincaré series for matroids. Algebraic Combinatorics, 6(3):623-638, 2023. · Zbl 1516.05024
[47] Joshua Maglione and Christopher Voll. Flag Hilbert-Poincaré series of hyperplane arrange-ments and Igusa zeta functions. Israel Journal of Mathematics (to appear), 2023.
[48] Franco Saliola and Hugh Thomas. Oriented interval greedoids. Discrete & Computational Geometry, 47(1):64-105, 2012. · Zbl 1237.52020
[49] John R. Stembridge. Enriched P -partitions. Trans. Amer. Math. Soc., 349(2):763-788, 1997. References · Zbl 0863.06005
[50] N. Alon, P. Frankl, and L. Lovász, The chromatic number of Kneser hypergraphs, Trans. Amer. Math. Soc., Vol. 298 (1986) 359-370. · Zbl 0605.05033
[51] A. Bialostocki and P. Dierker, On the Erdős-Ginzburg-Ziv theorem and the Ramsey numbers for stars and matchings, Discrete Math., Vol. 110, No. 1-3 (1992) 1-8. · Zbl 0774.05065
[52] Y. Caro, Zero-sum problems -A survey, Discrete Math., Vol. 152 (1996), 93-113. · Zbl 0856.05068
[53] P. Erdős, A. Ginzburg, and A. Ziv, A theorem in additive number theory, Israel Research and Development Nat. Council Bull., Sect. F, Vol. 10 (1961), 41-43. · Zbl 0063.00009
[54] F. Frick, J. Lehmann Duke, M. McNamara, H. Park-Kaufmann, S. Raanes, S. Si-mon, D. Thornburgh, and Z. Wellner, Topological methods in zero-sum Ramsey theory, arXiv:2310.17065 (2023).
[55] I. Kríž, Equivariant cohomology and lower bounds for chromatic numbers, Trans. Amer. Math. Soc., Vol. 333, No. 2 (1992) 567-577. · Zbl 0756.05055
[56] J. E. Olson, On a combinatorial problem of Erdős, Ginzburg, and Ziv, J. Number Theory, Vol. 8, No. 1 (1976) 52-57. References · Zbl 0333.05009
[57] Goaoc, X. and Welzl, E., Convex hulls of random order types, Journal of the ACM 70(1) (2023), 1-47. · Zbl 07876161
[58] A. Björner, Shellable and Cohen-Macaulay partially ordered sets, Trans. Amer. Math. Soc. 260 (1980), no. 1, 159-183. · Zbl 0441.06002
[59] A. Björner, Topological methods, Handbook of combinatorics, Vol. 1, 2, 1819-1872, Elsevier Sci. B. V., Amsterdam, 1995. · Zbl 0851.52016
[60] A. Björner and M. Wachs, On lexicographically shellable posets, Trans. Amer. Math. Soc. 277 (1983), no. 1, 323-341. · Zbl 0514.05009
[61] A. Björner and M. Wachs, Shellable nonpure complexes and posets I, Trans. Amer. Math. Soc. 348 (1996), no. 4, 1299-1327. · Zbl 0857.05102
[62] A. Björner and M. Wachs, Shellable nonpure complexes and posets II, Trans. Amer. Math. Soc. 349 (1997), no. 10, 3945-3975. · Zbl 0886.05126
[63] P. Hall, A contribution to the theory of groups of prime power order, Proc. London Math. Soc., II. Ser. 36 (1932), 39-95. · Zbl 0007.29102
[64] P. Hersh and R. Kenyon, Shellability of face posets of electrical networks and the CW poset property, Advances in Applied Math. 127 (2021), 37 pages. · Zbl 1535.06004
[65] D. Kozlov, General lexicographic shellability and orbit arrangements, Annals of Com-binatorics, 1 (1997), no. 1, 67-90. · Zbl 0943.52004
[66] T. Lam, The uncrossing partial order on matchings is Eulerian, Journal of Combinato-rial Theory, Ser. A 135 (2015), 105-111. · Zbl 1319.05106
[67] G.-C. Rota, On the foundations of combinatorial theory. I. Theory of Möbius functions, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 2 (1964), 340-368. · Zbl 0121.02406
[68] R. Stanley, Enumerative Combinatorics, Volume 1, Cambridge University Press, 2nd edition, 2012. · Zbl 1247.05003
[69] M. Wachs, Poset topology: tools and applications, chapter in: AIS/Pack City Math Institute volume on Geometric Combinatorics, 497-615, 2007. References · Zbl 1135.06001
[70] W. Bateson, Mendel’s principles of heredity, Cambridge University Press (1909). https://www.biodiversitylibrary.org/item/96877
[71] N. Beerenwinkel, L. Pachter and B. Sturmfels, Epistasis and shapes of fitness, Statist. Sinica 17 (2007), 1317-1342. · Zbl 1132.92017
[72] J.A. De Loera, J. Rambau and F. Santos, Triangulations, Springer Berlin (2010). · Zbl 1207.52002
[73] H. Eble, M. Joswig, L. Lamberti and W.B. Ludington, Cluster partitions and fitness land-scapes of the Drosophila fly microbiome, J. Math. Biol. 79 (2019), no. 3, 861-899. · Zbl 1419.92014
[74] H. Eble, M. Joswig, L. Lamberti and W.B. Ludington, Master regulators of biological sys-tems in higher dimensions, Proc. Natl. Acad. Sci. USA 120 (2023), no. 51. References
[75] D. Cizma, N. Linial, Geodesic geometry on graphs, Discrete & Computational Geometry 68 (2022) 298-347. · Zbl 1490.05130
[76] D. Cizma, N. Linial, Irreducible nonmetrizable path systems in graphs, J. of Graph Theory 102 (2023) 5-14. References · Zbl 1526.05071
[77] S. Backman and G. Liu, A regular unimodular triangulation of the matroid base polytope, arXiv:2309.10229, 2023. Polyhedral Geometry of ReLU Neural Networks Georg Loho (joint work with C. Haase, C. Hertrich; M. Brandenburg, G. Montúfar, H. Tseran)
[78] We show new insights in the structure of ReLU Neural Networks based on poly-hedral geometry. On one hand, we describe natural subdivisions of the space of piecewise-linear classifiers represented by a ReLU neural network. On the other hand, we show lower bounds on the number of layers for representing integral piecewise-linear functions. The advances involve (generalizations of) oriented ma-troids, Newton polytopes of tropical polynomials and the use of geometric invari-ants, in particular normalized volume of lattice polytopes. References
[79] L. Zhang, G. Naitzat, and L.-H. Lim, Tropical geometry of deep neural networks, Interna-tional Conference on Machine Learning (ICML), 2018.
[80] C. Hertrich, A. Basu, M. Summa, and M. Skutella, Towards lower bounds on the depth of ReLU neural networks, Advances in Neural Information Processing Systems (NeurIPS), 2021.
[81] M. Brandenburg, G. Loho, G. Montúfar, and H. Tseran, The Real Tropical Geometry of Neural Networks, in preparation, 2024.
[82] C. Haase, C. Hertrich, G. Loho, Lower Bounds on the Depth of Integral ReLU Neural Net-works via Lattice Polytopes, International Conference on Learning Representations (ICLR), 2023. References
[83] N. Alon and Y. Roichman, Random Cayley graphs and expanders, Random Structures Algorithms 5 (1994), 271-284. · Zbl 0798.05048
[84] O. Beit-Aharon and R. Meshulam, Spectral expansion of random sum complexes, J. Topol. Anal. 12 (2020), 989-1002. · Zbl 1451.05253
[85] B. Bollobás, Modern Graph Theory, Graduate Texts in Mathematics, Springer Verlag, New York, 1998. · Zbl 0902.05016
[86] R. Meshulam, Random balanced Cayley complexes, J. Appl. Comput. Topol., to appear. References
[87] L. Asimov and B. Roth, The rigidity of graphs, Trans. Amer. Math. Soc. 245 (1978) 279-289. · Zbl 0392.05026
[88] R. Connelly, Rigidity, Handbook of convex geometry, Part. A, North-Holland (1993), 223-271. · Zbl 0788.52001
[89] J.E. Graver, B. Servatius and H. Servatius, Combinatorial rigidity, Graduate studies in mathematics, AMS (1993). · Zbl 0788.05001
[90] S. Hoory, N. Linial and A. Wigderson, Expander graphs and their applications, Bulletin of the American Mathematical Society, 43 (2006), 439-561. · Zbl 1147.68608
[91] T. Jordán and S. Tanigawa, Rigidity of random subgraphs and eigenvalues of stiffness ma-trices, SIAM Journal on Discrete Mathematics 36 (2022), 2367-2392. · Zbl 1498.05242
[92] A. Lew, E. Nevo, Y. Peled and O. Raz, On the d-dimensional algebraic connectivity of graphs Israel J. Math. 256 (2022), 479-511. · Zbl 1522.05253
[93] A. Lubotzky, Expander graphs in pure and applied mathematics, Bulletin of the American Mathematical Society 49 (2012), 113-162. · Zbl 1232.05194
[94] J. F. Presenza, I. Mas, J. I. Giribet, and J. I. Alvarez-Hamelin, A new upper bound for the d-dimensional algebraic connectivity of arbitrary graphs, arXiv::2209.14893, 2022. References
[95] M. M. Kapranov and V. A. Voevodsky, Combinatorial-geometric aspects of polycategory theory: pasting schemes and higher Bruhat orders (list of results), Vol. 32. 1. International Category Theory Meeting (Bangor, 1989 and Cambridge, 1990) (1991), 11-27. · Zbl 0748.18010
[96] N. E. Mnëv. The universality theorems on the classification problem of configuration va-rieties and convex polytopes varieties, Topology and geometry-Rohlin Seminar Vol. 1346. Lecture Notes in Math. Springer, Berlin, 1988, 527-543. · Zbl 0667.52006
[97] R. Steiner, Omega-categories and chain complexes, Homology Homotopy Appl. 6.1 (2004), 175-00. · Zbl 1071.18005
[98] R. Street. The algebra of oriented simplexes. J. Pure Appl. Algebra 49.3 (1987), 283-335. References · Zbl 0661.18005
[99] K. Adiprasito, Combinatorial Lefschetz theorems beyond positivity, arXiv preprint (2018) 76 pp. arXiv:1812.10454
[100] K. Adiprasito, S. A. Papadakis and V. Petrotou, Anisotropy, biased pairings, and the Lefschetz property for pseudomanifolds and cycles, arXiv preprint (2021) 20 pp. arXiv:2101.07245
[101] S. A. Papadakis and V. Petrotou, The characteristic 2 anisotropicity of simplicial spheres, arXiv preprint (2020) 38 pp. arXiv:2012.09815 References [BLS + 99] Anders Björner, Michel Las Vergnas, Bernd Sturmfels, Neil White, and Günter M. Ziegler. Oriented matroids, volume 46 of Encyclopedia of Mathematics and its Appli-cations. Cambridge University Press, Cambridge, second edition, 1999. · Zbl 0944.52006
[102] Michael P. Carr and Satyan L. Devadoss. Coxeter complexes and graph-associahedra. Topology Appl., 153(12):2155-2168, 2006. · Zbl 1099.52001
[103] Eva-Maria Feichtner and Dmitry N. Kozlov. Incidence combinatorics of resolutions. Selecta Math. (N.S.), 10(1):37-60, 2004. · Zbl 1068.06004
[104] Eva Maria Feichtner and Bernd Sturmfels. Matroid polytopes, nested sets and Bergman fans. Port. Math. (N.S.), 62(4):437-468, 2005. · Zbl 1092.52006
[105] Pavel Galashin. Poset associahedra. arXiv:2110.07257, Preprint, 2021.
[106] Alexander Postnikov. Permutohedra, associahedra, and beyond. Int. Math. Res. Not. IMRN, (6):1026-1106, 2009. · Zbl 1162.52007
[107] Andrew Sack. A realization of poset associahedra. arXiv:2301.11449, Preprint, 2023. References
[108] A. Ádem, Finite group actions on acyclic 2-complexes, Astérisque No. 290 (2003), Exp. No. 894, vii, 1-17. · Zbl 1062.57039
[109] M. G. Aschbacher and Y. Segev, A fixed point theorem for groups acting on finite 2-dimensional acyclic simplicial complexes, Proc. London Math. Soc. (3) 67 (1993), no. 2, 329-354. · Zbl 0834.57022
[110] M. G. Aschbacher and S. D. Smith, On Quillen’s conjecture for the p-groups complex, Ann. of Math. (2) 137 (1993), no. 3, 473-529. · Zbl 0782.20039
[111] C. Casacuberta and W. Dicks, On finite groups acting on acyclic complexes of dimension two, Publ. Mat. 36 (1992), no. 2A, 463-466 (1993). · Zbl 0839.57025
[112] E. Floyd and R. W. Richardson, An action of a finite group on an n-cell without stationary points, Bull. Amer. Math. Soc. 65 (1959), 73-76. · Zbl 0088.15302
[113] B. Oliver and Y. Segev, Fixed point free actions on Z-acyclic 2-complexes, Acta Math. 189 (2002), no. 2, 203-285. · Zbl 1034.57033
[114] K. I. Piterman, Maximal subgroups of exceptional groups and Quillen’s dimension, Algebra Number Theory (2023). To appear.
[115] K. I. Piterman and I. Sadofschi Costa, Group actions on contractible 2-complexes II, Preprint (2021). https://arxiv.org/abs/2102.11459.
[116] K. I. Piterman and S. D. Smith, Some results on Quillen’s Conjecture via equivalent-poset techniques, Preprint (2022). https://arxiv.org/abs/2204.13055.
[117] D. G. Quillen, Homotopy properties of the poset of nontrivial p-subgroups of a group, Adv. in Math. 28 (1978), no. 2, 101-128. · Zbl 0388.55007
[118] I. Sadofschi Costa, Group actions on contractible 2-complexes I (with an appendix by K.I. Piterman), Preprint (2021). https://arxiv.org/abs/2102.11458.
[119] I. Sadofschi Costa, Group actions of A 5 on contractible 2-complexes, Preprint (2020) https://arxiv.org/abs/2009.01755. References
[120] V. I. Arnold, The cohomology ring of the group of dyed braids, Mat. Zametki 5 (1969), 227-231. · Zbl 0277.55002
[121] T. Church and B. Farb, Benson, Representation theory and homological stability, Adv. Math. 245 (2013), 250-314, · Zbl 1300.20051
[122] F. Cohen, T. Lada, and P. May, The homology of iterated loop spaces, Lecture Notes in Mathematics 533, Springer-Verlag 1976. · Zbl 0334.55009
[123] S. Priddy, Koszul resolutions, Trans. Amer. Math. Soc. 152 (1970), 39-60. · Zbl 0261.18016
[124] S. Sundaram and V. Welker, Group actions on arrangements of linear subspaces and appli-cations to configuration spaces, Trans. Amer. Math. Soc. 349 (1997), 1389-1420. References · Zbl 0945.05067
[125] N. Anderson, F. Rincón, Paving tropical ideals, Journal of Algebraic Combinatorics 56 (2022). · Zbl 1494.14062
[126] J. Draisma, F. Rincón, Tropical ideals do not realise all Bergman fans, Research in the Mathematical Sciences 8 (44) (2021). · Zbl 1467.14158
[127] D. Maclagan, F. Rincón, Tropical ideals, Compositio Mathematica 154 (3) (2018). · Zbl 1428.14093
[128] D. Maclagan, F. Rincón, Varieties of tropical ideals are balanced, Advances in Mathematics 410 (2022). References · Zbl 1510.14053
[129] L. J. Billera and B. Sturmfels, Fiber polytopes, Ann. of Math. (2), 135 (1992), pp. 527-549. · Zbl 0762.52003
[130] A. E. Black, J. A. De Loera, N. Lütjeharms, and R. Sanyal, The polyhedral geometry of pivot rules and monotone paths, SIAM Journal on Applied Algebra and Geometry, 7 (2023), pp. 623-650. · Zbl 1522.90025
[131] N. Bottman and D. Poliakova, Constrainahedra, preprint 2022, arXiv:2208.14529
[132] F. Chapoton and V. Pilaud, Shuffles of deformed permutahedra, multiplihedra, con-strainahedra, and biassociahedra, preprint 2022, arXiv:2201.06896 References
[133] Libor Barto, Diego Battistelli, and Kevin M. Berg. Symmetric promise constraint satisfac-tion problems: Beyond the Boolean case. In Proceedings of the 38th International Sym-posium on Theoretical Aspects of Computer Science, STACS 2021, Paper No. 10, 16 pp., LIPIcs. Leibniz Int. Proc. Inform., volume 289, Schloss Dagstuhl. Leibniz-Zentrum für In-formatik, Wadern, 2021.
[134] Libor Barto, Jakub Bulín, Andrei Krokhin, and Jakub Opršal. Algebraic approach to promise constraint satisfaction. J. ACM, 68(4):28:1-66, 2021. · Zbl 1499.68140
[135] Jakub Bulín, Andrei Krokhin, and Jakub Opršal. Algebraic approach to promise constraint satisfaction. In Proc. of the 51st Annual ACM-SIGACT Symposium on the Theory of Com-puting, STOC 2019, pages 602-613, New York, USA, 2019. ACM. · Zbl 1433.68271
[136] Irit Dinur, Elchanan Mossel, and Oded Regev. Conditional hardness for approximate color-ing. · Zbl 1192.68317
[137] SIAM J. Comput., 39(3):843-873, 2009. · Zbl 1192.68317
[138] Irit Dinur, Oded Regev, and Clifford Smyth. The hardness of 3-uniform hypergraph coloring. Combinatorica, 25(5):519-535, 2005. · Zbl 1106.68080
[139] Marek Filakovský, Tamio-Vesa Nakajima, Jakub Opršal, Gianluca Tasinato, and Uli Wag-ner. Hardness of linearly ordered 4-colouring of 3-colourable 3-uniform hypergraphs. In Pro-ceedings of the 41st International Symposium on Theoretical Aspects of Computer Science, STACS 2024, Paper No. 34, 19 pp., LIPIcs. Leibniz Int. Proc. Inform., volume 289, Schloss Dagstuhl. Leibniz-Zentrum für Informatik, Wadern, 2024.
[140] Richard M. Karp. Reducibility among Combinatorial Problems, pages 85-103. Springer US, Boston, MA, 1972. · Zbl 1467.68065
[141] Sanjeev Khanna, Nathan Linial, and Shmuel Safra. On the hardness of approximating the chromatic number. Combinatorica, 20(3):393-415, 2000. · Zbl 0964.68065
[142] Andrei A. Krokhin, Jakub Opršal, Marcin Wrochna, and Stanislav Živný. Topology and adjunction in promise constraint satisfaction. SIAM Journal on Computing, 52(1):38-79, 2023. · Zbl 07672224
[143] László Lovász. Kneser’s conjecture, chromatic number, and homotopy. J. Combin. Theory Ser. A, 25(3):319-324, 1978. · Zbl 0418.05028
[144] Tamio-Vesa Nakajima and Stanislav Živný. Linearly ordered colourings of hypergraphs. ACM Trans. Comput. Theory, 14(3-4), February 2023.
[145] Tamio-Vesa Nakajima and Stanislav Živný. Boolean symmetric vs. functional PCSP di-chotomy. In 2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1-12, 2023.
[146] Marcin Wrochna and Stanislav Živný. Improved hardness for H-colourings of G-colourable graphs. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Al-gorithms (SODA’20), pages 1426-1435, Salt Lake City, UT, USA, 2020. SIAM. · Zbl 1502.68136
[147] David Zuckerman. Linear degree extractors and the inapproximability of max clique and chromatic number. Theory Comput., 3:103-128, 2007. References · Zbl 1213.68322
[148] N. Alon, The number of polytopes, configurations and real matroids, Mathematika 33.1 (1986), 62-71. · Zbl 0591.05014
[149] B. Benedetti and M. Pavelka, 2-LC triangulated manifolds are exponentially many, arXiv preprint arXiv:2106.12136 (2022).
[150] B. Benedetti and G.M. Ziegler, On locally constructible spheres and balls, Acta Mathematica 206 (2011), 205-243. · Zbl 1237.57025
[151] J.E. Goodman and R. Pollack, Upper bounds for configurations and polytopes in R d , Discrete & Computational Geometry 1 (1986), 219-227. · Zbl 0609.52004
[152] M. Gromov, Spaces and questions, Visions in Mathematics: GAFA 2000 Special Volume, Part I (2010), 118-161.
[153] G. Kalai, Many triangulated spheres, Discrete & Computational Geometry 3 (1988), 1-14. https://doi.org/10.1007/BF02187893 · Zbl 0631.52009 · doi:10.1007/BF02187893
[154] C.W. Lee, Kalai’s squeezed spheres are shellable., Discrete & Computational Geometry 24 (2000), 391-396. · Zbl 0959.52012
[155] E. Nevo, F. Santos, and S. Wilson, Many triangulated odd-dimensional spheres, Mathema-tische Annalen 364.3 (2016), 737-762. · Zbl 1351.52013
[156] W.T. Tutte, A census of planar triangulations, Canadian Journal of Mathematics 14 (1962), 21-38. · Zbl 0103.39603
[157] Y. Yang, On the constructibility of the Nevo-Santos-Wilson spheres, arXiv preprint arXiv:2305.03186 (2023).
[158] K. Adiprasito, Combinatorial Lefschetz theorems beyond positivity, arXiv:1812.10454v4, 2018.
[159] J. Cruickshank, B. Jackson, and S. Tanigawa, Global rigidity of triangulated manifolds, arXiv:2204.02503, 2022.
[160] J. Dancis, Triangulated n-manifolds are determined by their (⌊n/2⌋+1)-skeletons, Topology Appl. 18 (1984), 17-26. · Zbl 0556.57017
[161] G. Kalai, Some aspects of the combinatorial theory of convex polytopes. In Polytopes: ab-stract, convex and computational (Scarborough, ON, 1993), volume 140 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pages 205-229. Kluwer Acad. Publ., Dordrecht, 1994. · Zbl 0804.52006
[162] K. Karu and E. Xiao, On the anisotropy theorem of Papadakis and Petrotou, Algebr. Comb., to appear; arXiv:2204.07758, 2022.
[163] C. W. Lee, P.L.-spheres, convex polytopes and stress, Discrete Comput. Geom., 15 (1996), 363-388. · Zbl 0849.52011
[164] S. Murai and E. Nevo, On the generalized lower bound conjecture for polytopes and spheres, Acta Math., 210 (2013), 185-202. · Zbl 1279.52014
[165] S. Murai, I. Novik and H. Zheng, Affine stresses, inverse systems, and reconstruction prob-lems, accepted to Int. Math. Res. Not. IMRN, 2023.
[166] U. Nagel, Empty simplices of polytopes and graded Betti numbers, Discrete Comput. Geom., 39 (2008), 389-410. · Zbl 1140.52009
[167] I. Novik and H. Zheng, Reconstructing simplicial polytopes from their graphs and affine 2-stresses, Israel Journal of Mathematics, 255 (2023), 891-910. · Zbl 1525.51014
[168] I. Novik and H. Zheng, Affine stresses: the partition of unity and Kalai’s reconstruction conjectures, arXiv:2208.06693, 2022.
[169] A. Padrol, Many neighborly polytopes and oriented matroids, Discrete Comput. Geom., 50 (2013), 865-902. · Zbl 1283.52013
[170] S. A. Papadakis and V. Petrotou, The characteristic 2 anisotropicity of simplicial spheres, arXiv:2012.09815, 2020.
[171] R. P. Stanley, The number of faces of a simplicial convex polytope, Adv. Math., 35 (1980), 236-238. · Zbl 0427.52006
[172] G. M. Ziegler. Lectures on polytopes, volume 152 of Graduate Texts in Mathematics. Spring-Verlag, New York, 1995. · Zbl 0823.52002
[173] B. Braun, K. Bruegge, Facets of Symmetric Edge Polytopes for Graphs with Few Edges, Journal of Integer Sequences 26 (2023), Article 23.7.2. · Zbl 1526.52012
[174] A. Mori, K. Mori, H. Ohsugi, Number of facets of symmetric edge polytopes arising from join graphs, preprint, 2023, https://doi.org/10.48550/arXiv.2312.11287 · doi:10.48550/arXiv.2312.11287
[175] M. Cuntz, Simplicial arrangements with up to 27 lines, Discrete & Computational Geom-etry, 48 (2012), pp. 682-701. · Zbl 1254.52009
[176] M. Cuntz, A greedy algorithm to compute arrangements of lines in the projective plane, Discrete & Computational Geometry, 68 (2021), pp. 107-124. · Zbl 1529.20061
[177] B. Grünbaum, A catalogue of simplicial arrangements in the real projective plane, Ars Mathematica Contemporanea, 2 (2009). · Zbl 1177.51020
[178] S. Manecke, R. Sanyal, Inscribable Fans II: Inscribed zonotopes, simplicial arrangements, and reflection groups, arXiv preprint arXiv:2203.11062, (2022).
[179] K. Adiprasito, B. Benedetti, The Hirsch conjecture holds for flag normal complexes, Math. Oper. Research 39, Issue 4 (2014), 1340-1348. · Zbl 1319.52017
[180] B. Benedetti, M. Varbaro, On the dual graphs of Cohen-Macaulay algebras, Int. Math. Res. Notices 2015 (2015), 8085-8115. · Zbl 1342.13015
[181] D. Bolognini, A. Macchia, M. Strazzanti, Binomial edge ideals of bipartite graphs, Eur. J. Combin. 70 (2018), 1-25. · Zbl 1384.05094
[182] M. Di Marca, M. Varbaro, On the diameter of an ideal, J. Algebra 511 (2018), 471-485. · Zbl 1400.13009
[183] A. Conca, M. Varbaro, Square-free Gröbner degenerations, Invent. Math. 221, No. 3 (2020), 713-730. · Zbl 1451.13076
[184] A. D’Alí, L. Venturello, Koszul Gorenstein Algebras from Cohen-Macaulay simplicial com-plexes, Int. Math. Res. Notices 2023 (2023), 4998-5045. · Zbl 1520.13031
[185] B. Holmes, On the diameter of dual graphs of Stanley-Reisner rings and Hirsch type bounds on abstractions of polytopes, Elec. J. Comb. 25 (2018), P1.60. · Zbl 1391.13022
[186] N. Anderson, Matroid products in tropical geometry, preprint, arXiv:2306.14771.
[187] M. Las Vergnas, On products of matroids, Discrete Mathematics 36 (1) (1981). References · Zbl 0463.05030
[188] C. A. Athanasiadis, Characteristic polynomials of subspace arrangements and finite fields, Adv. Math. 122 (1996), no. 2, 193-233. · Zbl 0872.52006
[189] D. Barsky and D. Dumont, Congruences pour les nombres de Genocchi de 2e espèce, Study Group on Ultrametric Analysis. 7th-8th years: 1979-1981 (Paris, 1979/1981) (French), Secrétariat Math., Paris, 1981, pp. Exp. No. 34, 13. · Zbl 0474.10011
[190] D. Dumont, Interprétations combinatoires des nombres de Genocchi, Duke Math. J. 41 (1974), 305-318. · Zbl 0297.05004
[191] D. Dumont and A. Randrianarivony, Dérangements et nombres de Genocchi, Discrete Math. 132 (1994), no. 1-3, 37-49. · Zbl 0807.05001
[192] G. Hetyei, Alternation acyclic tournaments, European J. Combin. 81 (2019), 1-21. · Zbl 1420.05069
[193] A. Lazar and M. L. Wachs The homogenized Linial arrangement and Genocchi numbers, Comb. Theory 2 (2022), no. 1, 34. · Zbl 1502.52019
[194] A. Lazar and M. L. Wachs A Dowling generalization of the homogenized Linial arrange-ment, to appear.
[195] A. Postnikov and R. P. Stanley, Deformations of Coxeter hyperplane arrangements, J. Com-bin. Theory Ser. A 91 (2000), no. 1-2, 544-597, In memory of Gian-Carlo Rota. · Zbl 0962.05004
[196] A. Randrianarivony, Polynômes de Dumont-Foata généralisés, Sém. Lothar. Combin. 32 (1994), Art. B32d, approx. 12. · Zbl 0856.05005
[197] R. P. Stanley, Enumerative combinatorics. Volume 1, second ed., Cambridge Studies in Advanced Mathematics, vol. 49, Cambridge University Press, Cambridge, 2012. · Zbl 1247.05003
[198] T. Zaslavsky, Facing up to arrangements: face-count formulas for partitions of space by hyperplanes, Mem. Amer. Math. Soc. 1 (1975), no. issue 1, 154, vii+102. · Zbl 0296.50010
[199] J. Zeng, Sur quelques propriétés de symétrie des nombres de Genocchi, Proceedings of the 5th Conference on Formal Power Series and Algebraic Combinatorics (Florence, 1993), vol. 153, 1996, pp. 319-333. Reporter: Johanna Steinmeyer · Zbl 0870.05002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.