×

On the diameter of dual graphs of Stanley-Reisner rings and Hirsch type bounds on abstractions of polytopes. (English) Zbl 1391.13022

Let \(R\) be an equidimensional commutative Noetherian ring of positive dimension. One says that \(R\) satisfies the Serre’s condition (\(S_{\ell}\)), if for every \(P\in \mathrm{Spec}(R)\), the inequality \(\text{depth}\;R_P\geq \min\{\ell,\dim R_P\}\) holds true. The dual graph \(\mathcal{G}(R)\) of \(R\) is defined as follows: the vertices are the minimal prime ideals of \(R\), and the edges are the pairs of prime ideals \((P_1, P_2)\) with \(\text{height}(P_1+P_2)=1\). It is well-known that \(\mathcal{G}(R)\) is a connected graph provided that \(R\) satisfies the Serre’s condition (\(S_2\)). Let \(\mu(d,n)\) be the largest diameter of a dual graph of an (\(S_2\)) Stanley-Reisner ring of dimension \(d\) and codimension \(n-d\). In the paper under review, the author provides lower and upper bounds for \(\mu(d,n)\). For example, it is shown that
(i) \(\mu(3,n)\leq \max(2n-10, n-2)\), for any \(n\geq 3\),
(ii) \(\mu(d,n) \leq 2^{d-2}(n-d)\), for all \(d\geq 2\) and all \(n\geq d\),
(iii) \(\mu(d,d+k)\leq 3.2^{\frac{n-d-5}{2}}(n-d)\), for all \(d\geq 2\),
(iv) \(\mu(4,4k+4)\geq 6k\),
(v) \(\mu(3,8k+2) \geq 10k-1\) and
(vi) \(\mu (3,8k+3+j) \geq 10k+j+1\), for all \(j\geq 4\).
The bounds are used to determine \(\mu(d,n)\) for small values of \(d\) and \(n\).
Dual graphs of (\(S_2\)) Stanley-Reisner rings are a natural abstraction of the \(1\)-skeletons of polyhedra. The author discusses how his results imply new Hirsch-type bounds on \(1\)-skeletons of polyhedra.

MSC:

13D02 Syzygies, resolutions, complexes and commutative rings
13F55 Commutative rings defined by monomial ideals; Stanley-Reisner face rings; simplicial complexes
05C12 Distance in graphs
05E45 Combinatorial aspects of simplicial complexes

References:

[1] Ian Adler and George Dantzig. Maximum diameter of abstract polytopes. Mathe matical Programming Study, 1:20-40, 1974. · Zbl 0395.90051
[2] David Barnette. An upper bound for the diameter of a polytope. Discrete Mathe matics, 10:9-13, 1974. · Zbl 0294.52007
[3] Bruno Benedetti, Barbara Bolognese, and Matteo Varbaro. Regulating Hartshorne’s connectedness theorem. Journal of Algebraic Combinatorics, 46(1):33-50, 2017. · Zbl 1368.05085
[4] Bruno Benedetti and Matteo Varbaro. On the dual graphs of cohen – macaulay alge bras. International Mathematics Research Notices, 2015(17):8085-8115, 2015. · Zbl 1342.13015
[5] Davide Bolognini, Antonio Macchia, and Francesco Strazzanti. Binomial edge ideals of bipartite graphs. European Journal of Combinatorics, 70:1-25, 2018. · Zbl 1384.05094
[6] Francisco Criado and Francisco Santos. The maximum diameter of pure simplicial complexes and pseudo-manifolds. Discrete & Computational Geometry, 58(3):643- 649, 2017. · Zbl 1431.05155
[7] Hailong Dao, Kangjin Han, and Matteo Varbaro. The influence of Serre’s condition on the h-vector. 2016. preprint.
[8] Friedrich Eisenbrand, Nicolai H¨ahnle, Alexander Razborov, and Thomas Rothvoß. Diameter of polyhedra: limits of abstraction. Mathematics of Operations Research, 35:786-794, 2010. · Zbl 1226.52004
[9] Christopher A. Francisco, Jeffrey Mermin, and Jay Schweig. A survey of Stanley Reisner theory. Connections between Algebra, Combinatorics, and Geometry, pages 209-234, 2014. the electronic journal of combinatorics 25(1) (2018), #P1.60 19 · Zbl 1316.13031
[10] Hassan Haghighi, Naoki Terai, Siamak Yassemi, and Rahim Zaare-Nahandi. Sequen tially S r simplicial complexes and sequentially S 2 graphs. Proceeds of the American Mathematical Society, 139(6):1993-2005, 2011. · Zbl 1220.13014
[11] Katsuyuki Hanano. A construction of two-dimensional buchsbaum simplicial com plexes. European Journal of Combinatorics, 22(2):171-178, 2001. · Zbl 0985.13009
[12] Robin Hartshorne. Complete intersections and connectedness. American Journal of Mathematics, 84(3):497-508, 1962. · Zbl 0108.16602
[13] Takayuki Hibi. Buchsbaum complexes with linear resolutions. Journal of Algebra, 179(1):127-136, 1996. · Zbl 0839.55012
[14] Melvin Hochster and Craig Huneke. Indecomposable canonical modules and con nectedness. Contemporary Mathematics, 159:197-208, 1994. · Zbl 0809.13003
[15] Fred Holt and Victor Klee. Many polytopes meeting the conjectured Hirsch bound. Discrete & Computational Geometry, 20:1-17, 1998. · Zbl 0926.52013
[16] Gil Kalai. Upper bounds for the diameter and height of graphs of convex polyhedra. Discrete & Computational Geometry, 8:363-372, 1992. · Zbl 0764.52003
[17] Victor Klee and David Walkup. The d-step conjecture for polyhedra of dimension d < 6. Acta Mathematica, 133:53-78, 1967. · Zbl 0163.16801
[18] David Larman. Paths on polytopes. Proceedings of the London Mathematical Society, 20:161-178, 1970. · Zbl 0199.59301
[19] Satoshi Murai and Naoki Terai. h-vectors of simplicial complexes with Serre’s con ditions. Mathematical Research Letters, 16(6):1015-1028, 2009. · Zbl 1200.13035
[20] Luis N´u˜nez-Betancourt, Sandra Spiroff, and Emily Witt.Connectedness and lyubeznik numbers. arXiv preprint arXiv:1711.03655, 2017.
[21] M. R. Pournaki, S. A. Seyed Fakhari, N. Terai, and S. Yassemi. Survey article: Simplicial complexes satisfying Serre’s condition: a survey with some new results. Journal of Commutative Algebra, 6(4):455-483, 2014. · Zbl 1345.13014
[22] Francisco Santos. A counterexample to the Hirsch conjecture. Annals of Mathematics, 176(1):383-412, 2011. · Zbl 1252.52007
[23] Francisco Santos. Recent progress on the combinatorial diameter of polytopes and simplicial complexes. TOP, 21(3):426-460, 2013. · Zbl 1280.52011
[24] Naoki Terai and Ken-ichi Yoshida. Buchsbaum stanley – reisner rings with minimal multiplicity. Proceedings of the American Mathematical Society, 134(1):55-65, 2006. · Zbl 1105.13027
[25] Naoki Terai. On h-vectors of Buchsbaum stanley-reisner rings. Hokkaido Mathemat ical Journal, 25:137-148, 1996. · Zbl 0867.13005
[26] Wolmer Vasconcelos. Integral Closure: Rees Algebras, Multiplicities, Algorithms. Springer-Verlag Berlin Heidelberg, 2005. · Zbl 1082.13006
[27] Charles Weibel. An Introduction to Homological Algebra. Cambridge University Press, Cambridge, England, 1994. · Zbl 0797.18001
[28] Kohji Yanagawa. Alexander duality for Stanley-Reisner rings and square-free N n graded modules. Journal of Pure and Applied Algebra, 146(3):630-645, 2000. · Zbl 0981.13011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.