×

Convex equipartitions: the spicy chicken theorem. (English) Zbl 1301.52010

Summary: We show that, for any prime power \(n\) and any convex body \(K\) (i.e., a compact convex set with interior) in \(\mathbb{R}^d\), there exists a partition of \(K\) into \(n\) convex sets with equal volumes and equal surface areas. Similar results regarding equipartitions with respect to continuous functionals and absolutely continuous measures on convex bodies are also proven. These include a generalization of the ham-sandwich theorem to arbitrary number of convex pieces confirming a conjecture of Kaneko and Kano, a similar generalization of perfect partitions of a cake and its icing, and a generalization of the Gromov-Borsuk-Ulam theorem for convex sets in the model spaces of constant curvature.

MSC:

52A20 Convex sets in \(n\) dimensions (including convex hypersurfaces)
28A75 Length, area, volume, other geometric measure theory
52A38 Length, area, volume and convex sets (aspects of convex geometry)
55M20 Fixed points and coincidences in algebraic topology

References:

[1] Agarwal, P.K., Sharir, M.: Davenport-Schinzel Sequences and Their Geometric Applications. Cambridge University Press, Cambridge (1995) · Zbl 0834.68113
[2] Akiyama, J., Kaneko, A., Kano, M., Nakamura, G., Rivera-Campo, E., Tokunaga, S., Urrutia, J.: Radial perfect partitions of convex sets in the plane. Discrete and Computational Geometry: Japanese Conference, JCDCG’98 Tokyo, Japan, December 9-12, :Revised Papers. Akiyama, J., Kano, M., Urabe, M. (eds). Lecture Notes in Computer Science 1763, Springer 2000, 1-13 (1998) · Zbl 0981.52004
[3] Alon, N.: Splitting necklaces. Adv. Math. 63, 247-253 (1987) · Zbl 0635.05008 · doi:10.1016/0001-8708(87)90055-7
[4] Aurenhammer, F., Hoffmann, F., Aronov, B.: Minkowski-type theorems and least-square clustering. Algorithmica 20, 61-72 (1998) · Zbl 0895.68135 · doi:10.1007/PL00009187
[5] Bárány, I., Blagojević, P., Szűcs, A.: Equipartitioning by a convex 3-fan. Adv. Math. 223(2), 579-593 (2010) · Zbl 1190.52001
[6] Blagojević, P., Ziegler, G.: Convex equipartitions via equivariant obstruction theory. arXiv:1202.5504, (2012) · Zbl 1305.52005
[7] Borel, A., Moore, J.C.: Homology theory for locally compact spaces. Mich. Math. J. 7, 137-159 (1960) · Zbl 0116.40301 · doi:10.1307/mmj/1028998385
[8] Brenier, Y.: Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math. 44(4), 375-417 (1991) · Zbl 0738.46011 · doi:10.1002/cpa.3160440402
[9] Cohen, F.R., Taylor, L.R.: On the representation theory associated to the cohomology of configuration spaces. In: Proceedings of an International Conference on Algebraic Topology, 4-11: Oaxtepec. Contemporary Mathematics 146(1993), 91-109 (July 1991) · Zbl 0806.57012
[10] Fuks, D.B.: The mod 2 cohomologies of the braid group (In Russian). Mat. Zametki 5(2), 227-231 (1970)
[11] Gromov, M.: Isoperimetry of waists and concentration of maps. Geom. Funct. Anal. 13, 178-215 (2003) · Zbl 1044.46057 · doi:10.1007/s000390300002
[12] Hubard, A., Aronov, B.: Convex equipartitions of volume and surface area. arXiv:1010.4611, (2010) · Zbl 0738.46011
[13] Hung, N.H.V.: The mod 2 equivariant cohomology algebras of configuration spaces. Pac. J. Math. 143(2), 251-286 (1990) · Zbl 0755.55005 · doi:10.2140/pjm.1990.143.251
[14] Kaneko, A., Kano, M.: Perfect partitions of convex sets in the plane. Discret. Comput. Geom. 28(2), 211-222 (2002) · Zbl 1022.52001 · doi:10.1007/s00454-002-2808-2
[15] Karasev, R.N.: Partitions of a polytope and mappings of a point set to facets. Discret. Comput. Geom. 34, 25-45 (2005) · Zbl 1078.52009 · doi:10.1007/s00454-005-1158-2
[16] Karasev, R.N.: The genus and the category of configuration spaces. Topol. Appl. 156(14), 2406-2415 (2009) · Zbl 1175.57026 · doi:10.1016/j.topol.2009.06.012
[17] Karasev, R.N.: Equipartition of several measures. arXiv.1011.4762, (2010) · Zbl 1208.52020
[18] McCann, R.: Existence and uniqueness of monotone measure-preserving maps. Duke Math. J. 80(2), 309-323 (1995) · Zbl 0873.28009 · doi:10.1215/S0012-7094-95-08013-2
[19] Memarian, Y.: On Gromov’s waist of the sphere theorem. arXiv:0911.3972, (2009) · Zbl 1225.46055
[20] Nandakumar, R., Ramana Rao, N.: ‘Fair’ partitions of polygons—an introduction. arXiv:0812.2241, (2008) · Zbl 1260.52013
[21] Soberón, P.: Balanced convex partitions of measures in \[\mathbb{R}^d\] Rd. Mathematika 58(1), 71-76 (2012); first appeared as arXiv:1010.6191, (2010) · Zbl 1267.28005
[22] Steenrod, N.E.: Homology with local coefficients. Ann. Math. 44(4), 610-627 (1943) · Zbl 0061.40901 · doi:10.2307/1969099
[23] Vasiliev, V.A.: Braid group cohomologies and algorithm complexity (In Russian). Funkts. Anal. Prilozh. 22(3), 1988, pp. 15-24. translation in. Funct. Anal. Appl. 22(3), 182-190 (1988) · Zbl 0674.68040
[24] Vasiliev, V.A.: Complements of Discriminants of Smooth Maps: Topology and Applications. Revised edition. Translations of Mathematical Monographs, 98. American Mathematical Society, (1994) · Zbl 0826.55001
[25] Villiani, C.: Optimal Transport: Old and New Grundlehren der Mathematischen Wissenschaften, vol. 338. Springer, UK (2009) · Zbl 1156.53003 · doi:10.1007/978-3-540-71050-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.