×

Fuzzy dynamics of multibody systems with polymorphic uncertainty in the material microstructure. (English) Zbl 1468.74069

Summary: This paper deals with the fuzzy dynamics of multibody systems with polymorphic uncertainty in the material microstructure. Macroscopic material properties are obtained using fuzzy-stochastic FEM based computational homogenization. In particular, the spectral stochastic local FEM is utilized to simulate a representative volume element of the microstructure. Forward dynamics of the macroscopic system is modeled using the Graph Follower algorithm. Thereby we propagate the uncertainty from the lowest level of material microstructure to the highest level of multibody dynamics. Differences in the propagation of epistemic and aleatoric uncertainties to the macroscale and their influence on the multibody dynamics are discussed. A particular example of a multibody system used in this paper is a multistory frame, whereby the considered heterogeneous material is a cement-based concrete.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74S60 Stochastic and other probabilistic methods applied to problems in solid mechanics
74H15 Numerical approximation of solutions of dynamical problems in solid mechanics
74Q10 Homogenization and oscillations in dynamical problems of solid mechanics
74M25 Micromechanics of solids
70E55 Dynamics of multibody systems
Full Text: DOI

References:

[1] Pannier, S.; Waurick, M.; Graf, A.; Kaliske, M., Solutions to problems with imprecise data—an engineering perspective to generalized uncertainty models, Mech Syst Signal Process, 37, 105-120 (2013) · doi:10.1016/j.ymssp.2012.08.002
[2] Graf, A.; Götz, M.; Kaliske, M., Analysis of dynamical processes under consideration of polymorphic uncertainty, Struct Saf, 52, 194-201 (2015) · doi:10.1016/j.strusafe.2014.09.003
[3] Zadeh, LA, Fuzzy sets, Inf Control, 8, 338-353 (1965) · Zbl 0139.24606 · doi:10.1016/S0019-9958(65)90241-X
[4] Ghanem RG, Spanos PD (2003) Stochastic finite elements: a spectral approach. Dover Publications, inc, New York · Zbl 0722.73080
[5] Bris CL, Legoll F (2017) Examples of computational approaches for elliptic, possibly multiscale pdes with random inputs. J Comput Phys 328(Supplement C):455-473 · Zbl 1406.35496
[6] Kaminski M (2013) The stochastic perturbation method for computational mechanics. Wiley, Hoboken · Zbl 1275.74002 · doi:10.1002/9781118481844
[7] Nouy, A.; Clement, A., Extended stochastic finite element method for the numerical simulation of heterogeneous materials with random material interfaces, Int J Numer Methods Eng, 83, 1312-1344 (2010) · Zbl 1202.74182 · doi:10.1002/nme.2865
[8] Cottereau R (2013) A stochastic-deterministic coupling method for multiscale problems. application to numerical homogenization of random materials. In: Procedia IUTAM, iUTAM symposium on multiscale problems in stochastic mechanics 6(0):35 - 43
[9] Matthies, HG; Keese, A., Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations, Comput Methods Appl Mech Eng, 194, 1295-1331 (2005) · Zbl 1088.65002 · doi:10.1016/j.cma.2004.05.027
[10] Hanss M (2005) Applied fuzzy arithmetic—an introduction with engineering applications. Springer, Berlin · Zbl 1085.03041
[11] Möller B, Beer M (2004) Fuzzy randomness: uncertainty in civil engineering and computational mechanics. Springer, Berlin · Zbl 1080.74003 · doi:10.1007/978-3-662-07358-2
[12] Moens, D.; Hanss, M., Non-probabilistic finite element analysis for parametric uncertainty treatment in applied mechanics: recent advances, Finite Elem Anal Des, 47, 4-16 (2011) · doi:10.1016/j.finel.2010.07.010
[13] Babuska, I.; Motamed, M., A fuzzy-stochastic multiscale model for fiber composites: a one-dimensional study, Comput Methods Appl Mech Eng, 302, 109-130 (2016) · Zbl 1425.74126 · doi:10.1016/j.cma.2015.12.016
[14] Chen S, Nikolaidis E, Cudney HH, Rosca R, Haftka RT (1999) Comparison of probabilistic and fuzzy set methods for designing under uncertainty. In: 40th Structures, structural dynamics, and materials conference and exhibit, structures, structural dynamics, and materials and co-located conferences
[15] Chen SQ (2000) Comparing probabilistic and fuzzy set approaches for designing in the presence of uncertainty, Ph.D. thesis, Aerospace and Ocean Engineering, Virginia Polytechnic Institute and State University
[16] Segalman DJ, Brake MR, Bergman LA, Vakakis AF, Willner K (2013) Epistemic and aleatoric uncertainty in modeling, In: ASME 2013 international design engineering technical conferences and computers and information in engineering conference, vol 8, 22nd reliability, stress analysis, and failure prevention conference; 25th conference on mechanical vibration and noise
[17] Zadeh, L., The concept of a linguistic variable and its application to approximate reasoning - \({\rm I}\), Inf Sci, 8, 199-249 (1975) · Zbl 0397.68071 · doi:10.1016/0020-0255(75)90036-5
[18] Pivovarov, D.; Oberleiter, T.; Willner, K.; Steinmann, P., Fuzzy-stochastic fem-based homogenization framework for materials with polymorphic uncertainties in the microstructure, Int J Numer Methods Eng, 116, 633-660 (2018) · Zbl 07865045 · doi:10.1002/nme.5947
[19] Pivovarov, D.; Steinmann, P., On stochastic fem based computational homogenization of magneto-active heterogeneous materials with random microstructure, Comput Mech, 58, 981-1002 (2016) · Zbl 1398.74392 · doi:10.1007/s00466-016-1329-4
[20] Hanss, M., The transformation method for the simulation and analysis of systems with uncertain parameters, Fuzzy Sets Syst, 130, 277-289 (2002) · Zbl 1015.65005 · doi:10.1016/S0165-0114(02)00045-3
[21] Saeb, S.; Steinmann, P.; Javili, A., Aspects of computational homogenization at finite deformations: a unifying review from Reuss’ to Voigt’s bound, ASME Appl Mech Rev, 68, 050801-050801-33 (2016) · doi:10.1115/1.4034024
[22] Eisentraudt, M.; Leyendecker, S., Fuzzy uncertainty in forward dynamics simulation, Mech Syst Signal Process, 126, 590-608 (2019) · doi:10.1016/j.ymssp.2019.02.036
[23] Eisentraudt, M.; Leyendecker, S., Epistemic uncertainty in optimal control simulation, Mech Syst Signal Process, 121, 876-889 (2019) · doi:10.1016/j.ymssp.2018.12.001
[24] Shynk JJ (2012) Probability, random variables, and random processes: theory and signal processing applications. Wiley, Hoboken · Zbl 1275.60002
[25] Papoulis A, Pillai SU (2001) Probability, Random Variables and Stochastic Processes. McGraw-Hill Education, New York
[26] Pivovarov, D.; Steinmann, P., Modified sfem for computational homogenization of heterogeneous materials with microstructural geometric uncertainties, Comput Mech, 57, 123-147 (2016) · Zbl 1381.74179 · doi:10.1007/s00466-015-1224-4
[27] Babuska, I.; Tempone, R.; Zouraris, GE, Galerkin finite element approximations of stochastic elliptic partial differential equations, SIAM J Numer Anal, 42, 800-825 (2004) · Zbl 1080.65003 · doi:10.1137/S0036142902418680
[28] Babuska, I.; Tempone, R.; Zouraris, GE, Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochastic formulation, Comput Methods Appl Mech Eng, 194, 1251-1294 (2005) · Zbl 1087.65004 · doi:10.1016/j.cma.2004.02.026
[29] Deb, MK; Babuska, IM; Oden, J., Solution of stochastic partial differential equations using galerkin finite element techniques, Comput Methods Appl Mechan Eng, 190, 6359-6372 (2001) · Zbl 1075.65006 · doi:10.1016/S0045-7825(01)00237-7
[30] Galipeau, E.; Rudykh, S.; deBotton, G.; Castaneda, PP, Magnetoactive elastomers with periodic and random microstructures, Int J Solids Struct, 51, 3012-3024 (2014) · doi:10.1016/j.ijsolstr.2014.04.013
[31] Zabihyan, R.; Mergheim, J.; Javili, A.; Steinmann, P., Aspects of computational homogenization in magneto-mechanics: boundary conditions, rve size and microstructure composition, Int J Solids Struct, 130-131, 105-121 (2018) · doi:10.1016/j.ijsolstr.2017.10.009
[32] Karavelas MI, Yvinec M (2002) Dynamic additively weighted Voronoi diagrams in 2D. Springer, Berlin, pp 586-598 · Zbl 1019.68608
[33] Grassl, P.; Wong, HS; Buenfeld, NR, Influence of aggregate size and volume fraction on shrinkage induced micro-cracking of concrete and mortar, Cem Concr Res, 40, 85-93 (2010) · doi:10.1016/j.cemconres.2009.09.012
[34] Niknezhad D, Raghavan B, Bernard F, Kamali-Bernard S (2015) The influence of aggregate shape, volume fraction and segregation on the performance of self-compacting concrete: 3d modeling and simulation. In: Rencontres Universitaires de Genie Civil
[35] Cho, S-W; Yang, C-C; Huang, R., Effect of aggregate volume fraction on the elastic moduli and void ratio of cement-based materials, J Mar Sci Technol, 8, 1-7 (2000)
[36] Scheunemann L, Schroeder J, Balzani D, Brands D (2014) Construction of statistically similar representative volume elements—comparative study regarding different statistical descriptors. In: Procedia Engineering, 11th International Conference on Technology of Plasticity, ICTP 2014 81:1360-1365. 19-24 Oct 2014. Nagoya Congress Center, Nagoya, Japan
[37] Saeb, S.; Steinmann, P.; Javili, A., Bounds on size-dependent behaviour of composites, Philos Mag, 98, 437-463 (2018) · doi:10.1080/14786435.2017.1408967
[38] Savvas, D.; Stefanou, G.; Papadrakakis, M., Determination of rve size for random composites with local volume fraction variation, Comput Methods Appl Mech Eng, 305, 340-358 (2016) · Zbl 1425.74039 · doi:10.1016/j.cma.2016.03.002
[39] Kamiński, Marcin, Homogenization with uncertainty in Poisson ratio for polymers with rubber particles, Composites Part B: Engineering, 69, 267-277 (2015) · doi:10.1016/j.compositesb.2014.07.033
[40] Nguyen, H., A note on the extension principle for fuzzy sets, J Math Anal Appl, 64, 369-380 (1978) · Zbl 0377.04004 · doi:10.1016/0022-247X(78)90045-8
[41] Ashari, E., Calculating free and forced vibrations of multi-story shear buildings by modular method, Res J Recent Sci, 3, 83-90 (2014)
[42] De la Cruz S, Rodriguez M, Hernandez V (2012) Using spring-mass models to determine the dynamic response of two-story buildings subjected to lateral loads, In: Proceedings of the 15th world conference on earthquake engineering 2012 (15WCEE), Lisbon, Portugal 31:24719-24726
[43] Valdebenito, M.; Pérez, C.; Jensen, H.; Beer, M., Approximate fuzzy analysis of linear structural systems applying intervening variables, Comput Struct, 162, 116-129 (2016) · doi:10.1016/j.compstruc.2015.08.020
[44] Feng, J.; Liu, L.; Wu, D.; Li, G.; Beer, M.; Gao, W., Dynamic reliability analysis using the extended support vector regression (x-svr), Mech Syst Signal Process, 126, 368-391 (2019) · doi:10.1016/j.ymssp.2019.02.027
[45] Nouy, A., Recent developments in spectral stochastic methods for the numerical solution of stochastic partial differential equations, Arch Comput Methods Eng, 16, 251-285 (2009) · Zbl 1360.65036 · doi:10.1007/s11831-009-9034-5
[46] Zhang, H.; Dai, H.; Beer, M.; Wang, W., Structural reliability analysis on the basis of small samples: an interval quasi-monte carlo method, Mech Syst Signal Process, 37, 137-151 (2013) · doi:10.1016/j.ymssp.2012.03.001
[47] Pivovarov, D.; Steinmann, P.; Willner, K., Two reduction methods for stochastic fem based homogenization using global basis functions, Comput Methods Appl Mech Eng, 332, 488-519 (2018) · Zbl 1440.74436 · doi:10.1016/j.cma.2018.01.002
[48] Pivovarov, D.; Willner, K.; Steinmann, P., On spectral fuzzy-stochastic fem for problems involving polymorphic geometrical uncertainties, Comput Methods Appl Mech Eng, 350, 432-461 (2019) · Zbl 1441.74271 · doi:10.1016/j.cma.2019.02.024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.