×

A fuzzy-stochastic multiscale model for fiber composites, a one-dimensional study. (English) Zbl 1425.74126

Summary: We study mathematical and computational models for computing the deformation of fiber-reinforced polymers due to external forces. A thorough study requires an understanding of both micro-structural effects and uncertainty/variability in the manufacturing process, such as uncertainty in the size and distribution of fibers and variability in material properties and fracture parameters. We first show that the present uncertainties/variabilities, which are of both random and non-random types, cannot be accurately characterized by current stochastic multiscale models based on precise probability theory, such as stationary random fields. Next, we present a new hybrid fuzzy-stochastic model, which can more accurately describe uncertainties/variabilities in fiber composites. The new model, which is referred to as a fuzzy-stationary random field, consists of a random field with fuzzy moments. We then construct a global-local multiscale algorithm in a fuzzy-stochastic framework for efficiently computing output quantities of interest, such as displacements and stresses, in regions of relatively small size, e.g. hot spots. The algorithm utilizes the concept of representative volume elements and homogenization and constructs a global solution to compute a local approximation that captures the microscale features of the problem. The results are based on and backed by real experimental data through a calibration-validation approach.

MSC:

74E30 Composite and mixture properties

Software:

bootstrap

References:

[1] Babuška, I., Solution of problem with interface and singularities, (deBoor, C., Mathematical Aspects of Finite Elements in Partial Differential Equations (1974), Academic Press: Academic Press New York), 213-277 · Zbl 0346.65062
[2] Babuška, I., Homogenization approach in engineering, (Glowinski, R.; Lions, J. L., Computing Methods in Applied Sciences and Engineering, Second International Symposium December 1975. Computing Methods in Applied Sciences and Engineering, Second International Symposium December 1975, Lecture Notes in Economics and Mathematical Systems, vol. 134 (1976), Springer-Verlag), 137-153 · Zbl 0376.73070
[3] Bensoussan, A.; Lions, J.-L.; Papanicolau, G., Asymptotic Analysis for Periodic Structures (1978), North-Holland: North-Holland Amsterdam · Zbl 0404.35001
[4] Spagnolo, S., Convergence in energy for elliptic operators, (Hubbard, B., Numerical Solution of Partial Differential Equations III, Synspade 1975 (1975), Academic Press), 469-499 · Zbl 0347.65034
[5] Murat, F.; Tartar, L., H-convergence, (Cherkaev, A.; Kohn, R., Topics in the Mathematical Modelling of Composite Materials. Topics in the Mathematical Modelling of Composite Materials, Progress in Nonlinear Differential Equations and Their Applications, vol. 31 (1997), Springer), 21-43 · Zbl 0920.35019
[6] Babuška, I., Homogenization and its applications, mathematical and computational problems, (Hubbard, B., Numerical Solutions of Partial Differential Equations-III. Numerical Solutions of Partial Differential Equations-III, SYNSPADE 1975, College Park MD, May 1975 (1976), Academic Press: Academic Press New York), 89-116 · Zbl 0346.65064
[7] Babuška, I., Solution of interface problems by homogenization, I. SIAM J. Math. Anal., 7, 603-634 (1976) · Zbl 0343.35022
[8] Babuška, I., Solution of interface problems by homogenization, II. SIAM J. Math. Anal., 7, 635-645 (1976) · Zbl 0343.35023
[9] Babuška, I., Solution of interface problems by homogenization, III. SIAM J. Math. Anal., 8, 923-937 (1977) · Zbl 0402.35046
[10] Babuška, I.; Osborn, J. E., Generalized finite element methods: Their performance and their relation to the mixed methods, SIAM J. Numer. Anal., 20, 510-536 (1983) · Zbl 0528.65046
[11] Matache, A. M.; Babuška, I.; Schwab, C., Generalized p-FEM in homogenization, Numer. Math., 86, 319-375 (2000) · Zbl 0964.65125
[12] Hughes, T. J.R.; Feijoo, G. R.; Mazzei, L.; Quincy, J. B., The variational multiscale method. A paradigm for computationnal mechanics, Comput. Methods Appl. Mech. Engrg., 166, 3-24 (1998) · Zbl 1017.65525
[13] Efendiev, Y.; Hou, T. Y., Multiscale Finite Element Methods (2009), Springer · Zbl 1163.65080
[14] Dorobantu, M.; Engquist, B., Wavelet-based numerical homogenization, SIAM J. Numer. Anal., 35, 540-559 (1998) · Zbl 0936.65135
[15] Engquist, B.; Runborg, O., Projection generated homogenization, (Antonić, N.; van Duijn, C. J.; Jäger, W.; Mikelić, A., Multiscale Problems in Science and Technology, in: Proceedings of the Conference on Multiscale Problems in Science and Technology, Dubrovnik, Croatia, September 2000 (2002), Springer: Springer Berlin), 129-150 · Zbl 1015.35012
[16] E, W.; Engquist, B., The heterogeneous multiscale methods, Commun. Math. Sci., 1, 87-132 (2003) · Zbl 1093.35012
[17] Engquist, W. E, B.; Li, X.; Ren, W.; Vanden-Eijnden, E., Heterogeneous multiscale methods: A review, Commun. Comput. Phys., 2, 367-450 (2007) · Zbl 1164.65496
[18] Kevrekidis, I. G.; Gear, C. W.; Hyman, J. M.; Kevrekidis, P. G.; Runborg, O.; Theodoropoulos, C., Equation-free, coarse-grained multiscale computation: Enabling microscopic simulators to perform system-level analysis, Commun. Math. Sci., 1, 715-762 (2003) · Zbl 1086.65066
[19] Hou, T. Y., Numerical approximations to multiscale solutions in partial differential equations, (Blowey, J. F.; Craig, A. W.; Shardlow, T., Frontiers in Numerical Analysis. Frontiers in Numerical Analysis, Universitext (2003), Springer), 241-301 · Zbl 1027.65154
[20] E, W., Principles of Multiscale Modeling (2011), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1238.00010
[21] Engquist, B.; Souganidis, P. E., Asymptotic and numerical homogenization, Acta Numer., 17, 147-190 (2008) · Zbl 1179.65142
[22] Oden, J. T.; Vemaganti, K. S., Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials. I: error estimates and adaptive algorithms, J. Comput. Phys., 164, 22-47 (2000) · Zbl 0992.74072
[23] Vemaganti, K. S.; Oden, J. T., Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials. II: a computational environment for adaptive modeling of heterogeneous elastic solids, Comput. Methods Appl. Mech. Engrg., 190, 6089-6124 (2001) · Zbl 1030.74051
[24] Babuška, I.; Lipton, R., \(l^2\)-global to local projection: an approach to multiscale analysis, Math. Mod. Methods Appl. Sci., 21, 2211-2226 (2011) · Zbl 1242.65234
[25] Fish, J.; Yu, Q.; Shek, K., Computational damage mechanics for composite materials based on mathematical homogenization, Internat. J. Numer. Methods Engrg., 45, 1657-1679 (1999) · Zbl 0949.74057
[26] Ladeveze, P.; Nouy, A., On a computational strategy with time and space homogenization for structural mechanics, Comput. Methods Appl. Mech. Engrg., 192, 3061-3087 (2003) · Zbl 1054.74701
[27] Feyel, F.; Chaboche, J. L., A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua, Comput. Methods Appl. Mech. Engrg., 192, 3233-3244 (2003) · Zbl 1054.74727
[28] (Soutis, C.; Beaumont, P. W. R., Multi-scale Modelling of Composite Material Systemms: The Art of Predictive Damage Modeling (2005), Woodhead Publishing Limited: Woodhead Publishing Limited Cambridge)
[29] Ladeveze, P.; Lubineau, G.; Violeau, D., A computational damage micro model of laminated composites, Int. J. Fract., 137, 139-150 (2006) · Zbl 1197.74087
[30] Ladeveze, P.; Lubineau, G.; Marsal, D., Towards a bridge between the micro- and mesomechanics of delamination for laminated composites, Compos. Sci. Technol., 66, 698-712 (2006)
[31] Kanouté, P.; Boso, D. P.; Chaboche, J. L.; Schrefler, B. A., Multiscale methods for composites: A review, Arch. Comput. Methods Eng., 16, 31-75 (2009) · Zbl 1170.74304
[32] Geers, M. G.D.; Kouznetsova, V. G.; Brekelmans, W. A.M., Multi-scale computational homogenization: Trends and challenges, J. Comput. Appl. Math., 234, 2175-2182 (2010) · Zbl 1402.74107
[33] Ghosh, S., Micromechanical Analysis and Multi-scale Modeling using the Voronoi cell Finite Element Method (2011), CRC Press · Zbl 1236.74002
[34] Tranquart, B.; Ladeveze, P.; Baranger, E.; Mouret, A., A computational approach for handling complex composite microstructures, Compos. Struct., 94, 2097-2109 (2012)
[35] Souganidis, P. E., Stochastic homogenization of Hamilton-Jacobi equations and some applications, Asymptot. Anal., 20, 1-11 (1999) · Zbl 0935.35008
[36] Bourgeata, A.; Piatnitski, A., Approximations of effective coefficients in stochastic homogenization, Ann. Inst. Henri Poincare B, 40, 153-165 (2004) · Zbl 1058.35023
[37] Blanc, X.; Le Bris, C., Improving on homogenized coefficients in the periodic and quasi-periodic settings, Netw. Heterog. Media, 5, 1-29 (2010) · Zbl 1262.65115
[38] Gloria, A.; Otto, F., An optimal variance estimate in stochastic homogenization of discrete elliptic equations, Ann. Probab., 39, 779-856 (2011) · Zbl 1215.35025
[39] Asokan, B. V.; Zabaras, N., A stochastic variational multiscale method for diffusion in heterogeneous random media, J. Comput. Phys., 218, 654-676 (2006) · Zbl 1106.65004
[40] Ganapathysubramanian, B.; Zabaras, N., Modeling diffusion in random heterogeneous media: Data-driven models, stochastic collocation and the variational multiscale method, J. Comput. Phys., 226, 326-353 (2007) · Zbl 1124.65007
[41] Aarnes, J. E.; Efendiev, Y., Mixed multiscale finite element methods for stochastic porous media flows, SIAM J. Sci. Comput., 30, 2319-2339 (2008) · Zbl 1171.76022
[42] Ma, X.; Zabaras, N., A stochastic mixed finite element heterogeneous multiscale method for flow in porous media, J. Comput. Phys., 230, 4696-4722 (2011) · Zbl 1416.76119
[43] Le Bris, C.; Legoll, F.; Thomines, F., Multiscale finite element approach for weakly random problems and related issues, ESAIM: Math. Modelling Numer. Anal., 48, 815-858 (2014) · Zbl 1300.65007
[44] Babuška, I.; Motamed, M.; Tempone, R., A stochastic multiscale method for the elastodynamic wave equations arising from fiber composites, Comput. Methods Appl. Mech. Engrg., 276, 190-211 (2014) · Zbl 1423.74966
[45] Xu, X. F.; Graham-Brady, L., A stochastic computational method for evaluation of global and local behavior of random elastic media, Comput. Methods Appl. Mech. Engrg., 194, 4362-4385 (2005) · Zbl 1091.74007
[46] Guilleminot, J.; Soize, C.; Kondo, D., Mesoscale probabilistic models for the elasticity tensor of fiber reinforced composites: Experimental identification and numerical aspects, Mech. Mater., 41, 1309-1322 (2009)
[47] Liu, W. K.; Qian, D.; Gonella, S.; Li, S.; Chen, W.; Chirputkar, S., Multiscale methods for mechanical science of complex materials: Bridging from quantum to stochastic multiresolution continuum, Internat. J. Numer. Methods Engrg., 83, 1039-1080 (2010) · Zbl 1197.74007
[48] Liu, Y.; Greene, M. S.; Chen, W.; Dikin, D. A.; Liu, W. K., Computational microstructure characterization and reconstruction for stochastic multiscale material design, omput.-Aided Des., 45, 65-76 (2013)
[49] (Papadrakakis, M.; Stefanou, G., Multiscale Modeling and Uncertainty Quantification of Materials and Structures (2014), Springer: Springer Cambridge)
[50] Grigoriu, M., Stochastic Calculus, Applications in Sciences and Engineering (2002), Birkhäuser: Birkhäuser Boston · Zbl 1015.60001
[51] Kachanov, L. M., Time of the rupture process under creep conditions, Bull. SSR Acad. Sci., 8, 26-31 (1958)
[52] Kachanov, L. M., Introduction to Continuum Damage Mechanics (1986), Martinus Nijhoff Publishers: Martinus Nijhoff Publishers Dordrecht, Netherlands · Zbl 0596.73091
[53] Rohwer, K., Predicting fiber composite damage and failure, J. Compos. Mater., 49, 2673-2683 (2015)
[54] Babuška, I.; Andersson, B.; Smith, P. J.; Levin, K., Damage analysis of fiber composites, Part I: statistical analysis on fiber scale, Comput. Methods Appl. Mech. Engrg., 172, 27-77 (1999) · Zbl 0956.74048
[55] Zadeh, L. A., Fuzzy sets, Inf. Control, 8, 338-353 (1965) · Zbl 0139.24606
[56] Efron, B.; Tibshirani, R., An Introduction to the Bootstrap (1993), Chapman and Hall: Chapman and Hall London · Zbl 0835.62038
[57] Efron, B., Better bootstrap confidence intervals, J. Amer. Statist. Assoc., 82, 171-185 (1987) · Zbl 0622.62039
[58] Phoon, K. K.; Huang, H. W.; Quek, S. T., Simulation of strongly non-Gaussian processes using Karhunen-Loeve expansion, Probab. Eng. Mech., 20, 188-198 (2005)
[59] Wan, X.; Karniadakis, G. E., Solving elliptic problems with non-Gaussian spatially-dependent random coefficients, Comput. Methods Appl. Mech. Engrg., 198, 1985-1995 (2009) · Zbl 1227.65014
[60] Dubois, D.; Prade, H., Fuzzy Sets and Systems—Theory and Applications (1980), Academic Press, Inc.: Academic Press, Inc. San Diego · Zbl 0444.94049
[61] (Demicco, R. V.; Klir, G. J., Fuzzy Logic in Geoplogy (2004), Elsevier Academic Press: Elsevier Academic Press San Diego)
[62] Ayyub, B. M.; Klir, G. J., Uncertainty Modeling and Analysis in Engineering and the Sciences (2006), Chapman and Hall: Chapman and Hall Boca Raton · Zbl 1118.62128
[63] Ross, T. J., Fuzzy Logic with Engineering Applications (2010), Wiley: Wiley Singapore
[64] Babuška, I.; Silva, R. S., Numerical treatment of engineering problems with uncertainties: the fuzzy set approach and its application to the heat exchange problem, Internat. J. Numer. Methods Engrg., 87, 115-148 (2011) · Zbl 1242.76228
[65] Möller, B.; Beer, M., Fuzzy Randomness (2004), Springer: Springer New York · Zbl 1080.74003
[66] Moore, R. E.; Kearfott, R. B.; Cloud, M. J., Introduction to Interval Analysis (2009), SIAM Press: SIAM Press Philadelphia, Pennsylvania · Zbl 1168.65002
[67] Carlsson, C.; Fullér, R.; Majlender, P., Additions of completely correlated fuzzy numbers, (Proceedings of IEEE International Conference on Fuzzy Systems (2004), Budapest), 535-539
[68] Fullér, R., On generalization of Nguy en’s theorem: A short survey of recent developments, (Fodor, J.; Fullér, R., Advances in Soft Computing, Intelligent Robotics and Control. Advances in Soft Computing, Intelligent Robotics and Control, Topics in Intelligent Engineering and Informatics, vol. 8 (2014), Springer), 183-190 · Zbl 1393.03028
[69] Grigoriu, M., Simulation of stationary non-Gaussian translation processes, J. Eng. Mech., 124, 121-126 (1998)
[70] Babuška, I.; Nobile, F.; Tempone, R., Reliability of computational science, Numer. Methods Partial Differential Equations, 23, 753-784 (2007) · Zbl 1118.65030
[71] Babuška, I.; Nobile, F.; Tempone, R., Asystematic approach to model validation based on Bayesian updates and prediction related rejection criteria, Comput. Methods Appl. Mech. Engrg., 197, 2517-2539 (2008) · Zbl 1139.74012
[72] Kanit, T.; Forest, S.; Galliet, I.; Mounoury, V.; Jeulin, D., Determination of the size of the representative voleme element for random composites: statistical and numerical approach, Int. J. Solids Struct., 40, 3647-3679 (2003) · Zbl 1038.74605
[73] Gitman, I. M.; Askes, H.; Sluys, L. J., Representative volume: Existence and size determination, Eng. Fract. Mech., 74, 2518-2534 (2007)
[74] Hill, R., Elastic properties of reinforced solids: some theoretical principles, J. Mech. Phys. Solids, 11, 357-372 (1963) · Zbl 0114.15804
[75] Drugan, W. J.; Willis, J. R., A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites, J. Mech. Phys. Solids, 44, 497-524 (1996) · Zbl 1054.74704
[76] Hashin, Z., Analysis of composite materials—a survey, J. Appl. Mech., 50, 481-505 (1983) · Zbl 0542.73092
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.