×

\( L_2\)-small ball asymptotics for Gaussian random functions: a survey. (English) Zbl 1517.60041

Summary: This article is a survey of the results on asymptotic behavior of small ball probabilities in \(L_2\)-norm. Recent progress in this field is mainly based on the methods of spectral theory of differential and integral operators.

MSC:

60G15 Gaussian processes
60-02 Research exposition (monographs, survey articles) pertaining to probability theory
47G10 Integral operators
34L05 General spectral theory of ordinary differential operators

References:

[1] AI, X. (2016). A note on Karhunen-Loève expansions for the demeaned stationary Ornstein-Uhlenbeck process. Statistics & Probability Letters 117 113-117. · Zbl 1346.60028
[2] AI, X. and LI, W. (2014). Karhunen-Loève expansions for the \(m\)-th order detrended Brownian motion. Science China Mathematics 57 2043-2052. · Zbl 1329.60286
[3] AI, X., LI, W. and LIU, G. (2012). Karhunen-Loève expansions for the detrended Brownian motion. Statistics & Probability Letters 82 1235-1241. · Zbl 1259.60093
[4] ALBIN, J. M. P. (1996). Minima of \(H\)-valued Gaussian processes. The Annals of Probability 24 788-824. · Zbl 0870.60046
[5] ANDERSON, T. and DARLING, D. (1952). Asymptotic theory of certain “goodness of fit” criteria based on stochastic processes. The Annals of Mathematical Statistics 23 193-212. · Zbl 0048.11301
[6] AURZADA, F. (2007). On the lower tail probabilities of some random sequences in \(l_p\). Journal of Theoretical Probability 20 843-858. · Zbl 1140.60012
[7] AURZADA, F., GAO, F., KÜHN, T., LI, W. V. and SHAO, Q. M. (2013). Small deviations for a family of smooth Gaussian processes. Journal of Theoretical Probability 26 153-168. · Zbl 1297.60022
[8] AURZADA, F., IBRAGIMOV, I. A., LIFSHITS, M. A. and VAN ZANTEN, J. H. (2009). Small deviations of smooth stationary Gaussian processes. Theory of Probability & Its Applications 53 697-707. · Zbl 1192.60055
[9] BARCZY, M. and IGLÓI, E. (2011). Karhunen-Loève expansions of \(α\)-Wiener bridges. Central European Journal of Mathematics 9 65-84. · Zbl 1228.60047
[10] BARCZY, M. and LOVAS, R. L. (2018). Karhunen-Loève expansion for a generalization of Wiener bridge. Lithuanian Mathematical Journal 58 341-359. · Zbl 1407.60050
[11] BEGHIN, L., NIKITIN, Y. Y. and ORSINGHER, E. (2003). Exact small ball constants for some Gaussian processes under the \(L_2\)-norm. Zapiski Nauchnykh Seminarov POMI 298 5-21. English transl.: Journal of Mathematical Sciences, 128(1):2493-2502, 2005. · Zbl 1078.60028
[12] BENASSI, A., COHEN, S. and ISTAS, J. (1998). Identifying the multifractional function of a Gaussian process. Statistics & Probability Letters 39 337-345. · Zbl 0931.60022 · doi:10.1016/S0167-7152(98)00078-9
[13] BIRKHOFF, G. (1908). On the asymptotic character of the solutions of certain linear differential equations containing a parameter. Transactions of the American Mathematical Society 9 219-231. · JFM 39.0386.01
[14] BIRKHOFF, G. (1908). Boundary value and expansion problems of ordinary linear differential equations. Transactions of the American Mathematical Society 9 373-395. · JFM 39.0386.02
[15] BIRMAN, M. S. and SOLOMJAK, M. Z. (1977). Asymptotics of the spectrum of pseudodifferential operators with anisotropic-homogeneous symbols. Vestnik LGU 13 13-21. [Russian]. English transl.: Vestnik Leningrad Univ. Math., 10:237-247, 1982. · Zbl 0492.47027
[16] BIRMAN, M. S. and SOLOMJAK, M. Z. (1979). Asymptotics of the spectrum of pseudodifferential operators with anisotropic-homogeneous symbols. II. Vestnik LGU 3 5-10. [Russian]. English transl.: Vestnik Leningrad Univ. Math., 12:155-161, 1980. · Zbl 0461.47025
[17] BIRMAN, M. S. and SOLOMYAK, M. Z. (1970). Asymptotic behavior of the spectrum of weakly polar integral operators. Izvestiya Akademii Nauk USSR. Seriya Matematicheskaya 34 1143-1158. [Russian]. English transl.: Math. USSR-Izv., 4(5):1151-1168, 1970. · Zbl 0261.47027
[18] BIRMAN, M. S. and SOLOMYAK, M. Z. (1974). Quantitative analysis in Sobolev imbedding theorems and applications to spectral theory. In Proceedings of X Summer Mathematical School. Yu.A. Mitropol’skiy and A.F. Shestopal (Eds) 5-189. [Russian]. English transl.: AMS Translations, Series 2, 114, Providence, R.I., 1980. · Zbl 0426.46019
[19] BIRMAN, M. S. and SOLOMYAK, M. Z. (2001). On the negative discrete spectrum of a periodic elliptic operator in a waveguide-type domain, perturbed by a decaying potential. Journal d’Analyse Mathématique 83 337-391. · Zbl 1200.35196
[20] BIRMAN, M. S. and SOLOMYAK, M. Z. (2010). Spectral theory of self-adjoint operators in Hilbert space. Second edition, revised and extended. Lan’, St.Petersburg [Russian]. English transl. of the first edition: Mathematics and Its Applications. Soviet Series, 5, Kluwer, Dordrecht etc. 1987. · Zbl 0744.47017
[21] BORELL, C. (1977). A note on Gauss measures which agree on small balls. Annales de l’IHP Probabilités et statistiques 13 231-238. · Zbl 0385.60007
[22] BOROVKOV, A. A. and MOGUL’SKII, A. A. (1989). On probabilities of small deviations for random processes. Trudy Instituta Matematiki Sibirskogo Otdeleniya AN SSSR 13 147-168. [Russian]. · Zbl 0708.60029
[23] BOROVKOV, A. A. and RUZANKIN, P. S. (2008). On small deviations of series of weighted random variables. Journal of Theoretical Probability 21 628-649. · Zbl 1147.60021
[24] BOROVKOV, A. A. and RUZANKIN, P. S. (2008). Small deviations of series of independent positive random variables with weights close to exponential. Siberian Advances in Mathematics 18 163-175. · Zbl 1249.60036
[25] BORZOV, V. V. (1970). Quantitative characteristics of singular measures. In Spectral Theory and Wave Processes. Problems of Mathematical Physics 4 42-47. Leningrad University Publisher [Russian]. English transl.: volume 4 of Topics in Mathematical Physics, pages 37-42, Springer, Boston, 1971. · Zbl 0226.28003
[26] BRONSKI, J. C. (2003). Small ball constants and tight eigenvalue asymptotics for fractional Brownian motions. Journal of Theoretical Probability 16 87-100. · Zbl 1060.60036
[27] CAI, C. H., HU, J. Q. and WANG, Y. L. (2021). Asymptotics of Karhunen-Loève Eigenvalues for Sub-Fractional Brownian Motion and Its Application. Fractal and Fractional 5 226.
[28] CAMERON, R. and MARTIN, W. (1944). The Wiener measure of Hilbert neighborhoods in the space of real continuous functions. Journal of Mathematics and Physics 23 195-209. · Zbl 0060.29103
[29] CARMONA, R. (1978). Tensor products of Gaussian measures. In Vector Space Measures and Applications I. Lecture Notes in Mathematics 644 96-124. Springer Berlin Heidelberg. · Zbl 0386.28017
[30] CARMONA, R. and CHEVET, S. (1979). Tensor Gaussian measures on \(L_p(E)\). Journal of Functional Analysis 33 297-310. · Zbl 0428.60007
[31] CHEN, X. and LI, W. (2003). Quadratic functionals and small ball probabilities for the \(m\)-fold integrated Brownian motion. The Annals of Probability 31 1052-1077. · Zbl 1030.60026
[32] CHIGANSKY, P. Y. and KLEPTSYNA, M. L. (2018). Exact asymptotics in eigenproblems for fractional Brownian covariance operators. Stochastic Processes and their Applications 128 2007-2059.
[33] CHIGANSKY, P. Y. and KLEPTSYNA, M. L. (2021). Sharp asymptotics in a fractional Sturm-Liouville problem. Fractional Calculus and Applied Analysis 24 715-738. · Zbl 1498.34082
[34] CHIGANSKY, P. Y., KLEPTSYNA, M. L. and MARUSHKEVYCH, D. A. (2018). Exact spectral asymptotics of fractional processes. arXiv:1802.09045. · Zbl 1425.60038
[35] CHIGANSKY, P. Y., KLEPTSYNA, M. L. and MARUSHKEVYCH, D. A. (2020). Mixed fractional Brownian motion: A spectral take. Journal of Mathematical Analysis and Applications 482 123558. · Zbl 1425.60038
[36] CHIGANSKY, P. Y., KLEPTSYNA, M. L. and MARUSHKEVYCH, D. A. (2020). On the eigenproblem for Gaussian bridges. Bernoulli 26 1706-1726. · Zbl 1462.60044
[37] CHIGANSKY, P. Y., KLEPTSYNA, M. L., NAZAROV, A. I. and RASTEGAEV, N. V. (2023). Spectral asymptotics for a class of integro-differential equations arising in the theory of integrated fractional Gaussian processes. Technical Report, in preparation.
[38] COX, D. (1982). On the existence of natural rate of escape functions for infinite dimensional Brownian motions. The Annals of Probability 10 623-638. · Zbl 0493.60048
[39] CSÁKI, E. (1982). On small values of the square integral of a multiparameter Wiener process. In Statistics and Probability. Proceedings of the 3rd Pannonian Symposium on Mathematical Statistics 19-26. D. Reidel Publishing Company. · Zbl 0536.60069
[40] DAVIS, R. and RESNICK, S. (1991). Extremes of moving averages of random variables with finite endpoint. The Annals of Probability 19 312-328. · Zbl 0726.60038
[41] DEHEUVELS, P. (2006). Karhunen-Loève expansions of mean-centered Wiener processes. In High Dimensional Probability. Proceedings of the Fourth International Conference, IMS Lecture Notes — Monograph Series, Vol. 51 62-76. IMS, Beachwood, OH. · Zbl 1130.60045
[42] DEHEUVELS, P. (2007). A Karhunen-Loève expansion for a mean-centered Brownian bridge. Statistics & Probability Letters 77 1190-1200. · Zbl 1274.62318
[43] DEHEUVELS, P. and MARTYNOV, G. (2003). Karhunen-Loève expansions for weighted Wiener processes and Brownian bridges via Bessel functions. In High Dimensional Probability III. Progress in probability 55 57-93. Springer Basel. · Zbl 1048.60021
[44] DEHEUVELS, P., PECCATI, G. and YOR, M. (2006). On quadratic functionals of the Brownian sheet and related processes. Stochastic Processes and their Applications 116 493-538. · Zbl 1090.60020
[45] DEMBO, A., MAYER-WOLF, E. and ZEITUNI, O. (1995). Exact behavior of Gaussian seminorms. Statistics & Probability Letters 23 275-280. · Zbl 0830.60030
[46] DEREICH, S. (2003). Small ball probabilities around random centers of Gaussian measures and applications to quantization. Journal of Theoretical Probability 16 427-449. · Zbl 1031.60003
[47] DONATI-MARTIN, C. and YOR, M. (1991). Fubini’s theorem for double Wiener integrals and the variance of the Brownian path. Annales de l’Institut Henri Poincaré. Probabilités et statistiques 27 181-200. · Zbl 0738.60074
[48] DUNFORD, N. and SCHWARTZ, J. T. (1971). Linear Operators. Part III: Spectral Operators. Wiley, New York. With the assistance of William G. Bade and Robert G. Bartle. · Zbl 0243.47001
[49] DUNKER, T., LIFSHITS, M. A. and LINDE, W. (1998). Small deviation probabilities of sums of independent random variables. In High dimensional probability. Progress in probability 43 59-74. Springer Basel. · Zbl 0902.60039
[50] DURBIN, J. (1973). Weak convergence of the sample distribution function when parameters are estimated. The Annals of Statistics 1 279-290. · Zbl 0256.62021
[51] FATALOV, V. R. (2003). Constants in the asymptotics of small deviation probabilities for Gaussian processes and fields. Russian Mathematical Surveys 58 725-772. · Zbl 1052.60026
[52] FERRATY, F. and VIEU, P. (2006). Nonparametric functional data analysis: theory and practice. Springer Series in Statistics 76. Springer, NY. · Zbl 1119.62046
[53] FILL, J. A. and TORCASO, F. (2004). Asymptotic analysis via Mellin transforms for small deviations in \(L_2\)-norm of integrated Brownian sheets. Probability theory and related fields 130 259-288. · Zbl 1052.60027
[54] FREIBERG, U. (2011). Refinement of the spectral asymptotics of generalized Krein Feller operators. Forum Mathematicum 23 427-445. · Zbl 1211.35211
[55] FREIBERG, U. R. and RASTEGAEV, N. V. (2018). On spectral asymptotics of the Sturm-Liouville problem with self-conformal singular weight with strong bounded distortion property. Zapiski Nauchnykh Seminarov POMI 477 129-135. [Russian]. English transl.: Journal of Mathematical Sciences, 244(6):1010-1014, 2020. · Zbl 1453.34036
[56] FREIBERG, U. R. and RASTEGAEV, N. V. (2020). On spectral asymptotics of the Sturm-Liouville problem with self-conformal singular weight. Siberian Mathematical Journal 61 901-912. · Zbl 07253595 · doi:10.1134/S0037446620050146
[57] FUJITA, T. (1987). A fractional dimension, self-similarity and a generalized diffusion operator. In Probabilistic methods in mathematical physics. Proceedings of Taniguchi International Symposium 83-90. Tokyo, Kinokuniya. · Zbl 0652.60084
[58] GAO, F., HANNIG, J., LEE, T. and TORCASO, F. (2003). Laplace transforms via Hadamard factorization. Electronic Journal of Probability 8 1-20. · Zbl 1064.60061
[59] GAO, F., HANNIG, J., LEE, T. Y. and TORCASO, F. (2004). Exact \(L_2\) small balls of Gaussian processes. Journal of Theoretical Probability 17 503-520. · Zbl 1049.60028
[60] GAO, F., HANNIG, J. and TORCASO, F. (2003). Comparison theorems for small deviations of random series. Electronic Journal of Probability 8 1-17. · Zbl 1065.60040
[61] GAO, F., HANNIG, J. and TORCASO, F. (2003). Integrated Brownian motions and Exact \(L_2\)-small balls. The Annals of Probability 31 1320-1337. · Zbl 1047.60030
[62] GAO, F. and LI, W. (2007). Logarithmic level comparison for small deviation probabilities. Journal of Theoretical Probability 20 1-23. · Zbl 1112.60028
[63] GAO, F. and LI, W. (2007). Small ball probabilities for the Slepian Gaussian fields. Transactions of the American Mathematical Society 359 1339-1350. · Zbl 1121.60034
[64] GRAF, S., LUSCHGY, H. and PAGÈS, G. (2003). Functional quantization and small ball probabilities for Gaussian processes. Journal of Theoretical Probability 16 1047-1062. · Zbl 1038.60032
[65] HOFFMANN-JØRGENSEN, J. (1976). Bounds for the Gaussian measure of a small ball in a Hilbert space Technical Report, Aarhus Universitet, Matematisk Institut.
[66] HOFFMANN-JØRGENSEN, J., SHEPP, L. A. and DUDLEY, R. M. (1979). On the lower tail of Gaussian seminorms. The Annals of Probability 7 319-342. · Zbl 0424.60041
[67] HONG, S. Y., LIFSHITS, M. A. and NAZAROV, A. I. (2016). Small deviations in \(L_2\)-norm for Gaussian dependent sequences. Electronic Communications in Probability 21 1-9. · Zbl 1336.60075
[68] HUTCHINSON, J. E. (1981). Fractals and self similarity. Indiana University Mathematics Journal 30 713-747. · Zbl 0598.28011
[69] IBRAGIMOV, I. A. (1979). The probability of a Gaussian vector with values in a Hilbert space hitting a ball of small radius. Zapiski Nauchnykh Seminarov LOMI 85 75-93. [Russian]. English transl.: Journal of Soviet Mathematics, 20(3):2164-2175, 1982. · Zbl 0489.60043
[70] JIN, S. (2014). Gaussian processes: Karhunen-Loève expansion, small ball estimates and applications in time series models, PhD thesis, University of Delaware.
[71] KAC, M., KIEFER, J. and WOLFOWITZ, J. (1955). On tests of normality and other tests of goodness of fit based on distance methods. The Annals of Mathematical Statistics 26 189-211. · Zbl 0066.12301
[72] KAC, M. and SIEGERT, A. J. F. (1947). An explicit representation of a stationary Gaussian process. The Annals of Mathematical Statistics 18 438-442. · Zbl 0033.38501
[73] KARHUNEN, K. (1946). Zur Spektraltheorie stochastischer Prozesse. Annales Academiae Scientiarum Fennicae 34. [German]. · Zbl 0030.20103
[74] KARHUNEN, K. (1947). Über lineare Methoden in der Wahrscheinlichkeitsrechnung. Annales Academiae Scientiarum Fennicae 47 3-79. [German]. · Zbl 0030.16502
[75] KAROL’, A. I. (2022). Singular values of compact pseudodifferential operators of variable order with nonsmooth symbol. Zapiski Nauchnykh Seminarov POMI 519 67-104. [Russian].
[76] KAROL’, A. I. and NAZAROV, A. I. (2014). Small ball probabilities for smooth Gaussian fields and tensor products of compact operators. Mathematische Nachrichten 287 595-609. · Zbl 1301.60044
[77] KAROL’, A. I. and NAZAROV, A. I. (2021). Spectral analysis for some multifractional Gaussian processes. Russian Journal of Mathematical Physics 28 488-500. · Zbl 1483.60061
[78] KAROL’, A. I., NAZAROV, A. I. and NIKITIN, Y. Y. (2008). Small ball probabilities for Gaussian random fields and tensor products of compact operators. Transactions of the American Mathematical Society 360 1443-1474. · Zbl 1136.60024
[79] KHARTOV, A. A. and LIMAR, I. A. (2022). Asymptotic analysis in multivariate average case approximation with Gaussian kernels. Journal of Complexity 70 101631. · Zbl 1491.65017
[80] KHOSHNEVISAN, D. (2002). Multiparameter Processes: an introduction to random fields. Springer Science & Business Media. · Zbl 1005.60005
[81] KHOSHNEVISAN, D. and SHI, Z. (1998). Chung’s law for integrated Brownian motion. Transactions of the American Mathematical Society 350 4253-4264. · Zbl 0902.60031
[82] KIGAMI, J. and LAPIDUS, M. L. (1993). Weyl’s problem for the spectral distribution of Laplacians on p.c.f. self-similar fractals. Communications in Mathematical Physics 158 93-125. · Zbl 0806.35130
[83] KILBAS, A. A., SRIVASTAVA, H. M. and TRUJILLO, J. J. (2006). Theory and applications of fractional differential equations 204. Elsevier. · Zbl 1092.45003
[84] KIRICHENKO, A. A. and NIKITIN, Y. Y. (2014). Precise small deviations in \(L_2\) of some Gaussian processes appearing in the regression context. Central European Journal of Mathematics 12 1674-1686. · Zbl 1322.60036
[85] KLEPTSYNA, M. L. and LE BRETON, A. (2002). A Cameron-Martin type formula for general Gaussian processes – a filtering approach. Stochastics: An International Journal of Probability and Stochastic Processes 72 229-251. · Zbl 1002.60031
[86] KLEPTSYNA, M. L., MARUSHKEVYCH, D. A. and CHIGANSKY, P. Y. (2020). Asymptotic accuracy in estimation of a fractional signal in a small white noise. Automation and Remote Control 81 411-429. · Zbl 1455.93196
[87] KOSAMBI, D. D. (1943). Statistics in Function Space. Journal of the Indian Mathematical Society 7 76-88. · Zbl 0063.03317
[88] KUELBS, J. and LI, W. V. (1993). Metric entropy and the small ball problem for Gaussian measures. Journal of Functional Analysis 116 133-157. · Zbl 0799.46053
[89] KUELBS, J., LI, W. V. and LINDE, W. (1994). The Gaussian measure of shifted balls. Probability Theory and Related Fields 98 143-162. · Zbl 0792.60004
[90] KÜHN, T. (2011). Covering numbers of Gaussian reproducing kernel Hilbert spaces. Journal of Complexity 27 489-499. · Zbl 1221.68195
[91] LAPTEV, A. A. (1974). Spectral asymptotic behavior of a class of integral operators. Mathematical Notes 16 1038-1043. · Zbl 0322.45003
[92] LI, W. (1992). Comparison results for the lower tail of Gaussian seminorms. Journal of Theoretical Probability 5 1-31. · Zbl 0743.60009
[93] LI, W. V. and LINDE, W. (1993). Small ball problems for non-centered Gaussian measures. Probability and Mathematical Statistics 14 231-251. · Zbl 0834.60008
[94] LI, W. and SHAO, Q. M. (2001). Gaussian processes: inequalities, small ball probabilities and applications. In Stochastic Processes: Theory and Methods. C.R. Rao and D. Shanbhag (Eds). Handbook of Statistics 19 533-597. North-Holland/Elsevier, Amsterdam. · Zbl 0987.60053
[95] LIFSHITS, M. A. (1995). Gaussian random functions. Teor. Veroyatnost. i Mat. Statist. (TViMS), Kiev [Russian]. English transl.: Kluwer, Dordrecht, 1995. · Zbl 0998.60501
[96] LIFSHITS, M. A. (1997). On the lower tail probabilities of some random series. The Annals of Probability 25 424-442. · Zbl 0873.60012
[97] LIFSHITS, M. A. (1999). Asymptotic behavior of small ball probabilities. In Probability Theory and Mathematical Statistics. Proceedings of the Seventh Vilnius Conference 453-468. VSP/TEV. · Zbl 0994.60017
[98] LIFSHITS, M. A. (2012). Lectures on Gaussian processes. Springer. · Zbl 1248.60002
[99] LIFSHITS, M. A. (2023). Bibliography of small deviation probabilities. https://airtable.com/shrMG0nNxl9SiGxII/tbl7Xj1mZW2VuYurm.
[100] LIFSHITS, M. A. and NAZAROV, A. I. (2018). \( L_2\)-small deviations for weighted stationary processes. Mathematika 64 387-405. · Zbl 1434.60115
[101] LIFSHITS, M. A., NAZAROV, A. I. and NIKITIN, Y. Y. (2003). Tail behavior of anisotropic norms for Gaussian random fields. Comptes Rendus Mathematique 336 85-88. · Zbl 1023.60047
[102] LINDE, W. (1994). Comparison results for the small ball behavior of Gaussian random variables. In Probability in Banach Spaces, 9. Progress in probability 273-292. Springer. · Zbl 0809.60049
[103] LINDE, W. and ROSINSKI, J. (1994). Exact behavior of Gaussian measures of translated balls in Hilbert spaces. Journal of Multivariate Analysis 50 1-16. · Zbl 0805.60005
[104] LIU, J. V. (2013). Karhunen-Loève expansion for additive Brownian motions. Stochastic Processes and their Applications 123 4090-4110. · Zbl 1322.60067
[105] LOÈVE, M. (1948). Fonctions aléatoires du second ordre. In P. Lévy. Processus stochastiques et mouvement brownien 367-420. Gauthier-Villars & \( C^\circ \) [French].
[106] LUSCHGY, H. and PAGÈS, G. (2004). Sharp asymptotics of the functional quantization problem for Gaussian processes. The Annals of Probability 32 1574-1599. · Zbl 1049.60029
[107] MARKUS, A. S. and MATSAEV, V. I. (1982). Comparison theorems for spectra of linear operators and spectral asymptotics. Trudy Moskovskogo Matematicheskogo Obshchestva 45 133-181. [Russian]. · Zbl 0532.47012
[108] MAYER-WOLF, E. and ZEITUNI, O. (1993). The probability of small Gaussian ellipsoids and associated conditional moments. The Annals of Probability 21 14-24. · Zbl 0771.60027
[109] MINKOWSKI, H. (1904). Zur Geometrie der Zahlen. In Verhandlungen des III Internationalen Mathematiker-Kongresses in Heidelberg, Berlin 164-173. [German]. · JFM 36.0281.01
[110] NAGAEV, A. V. and STARTSEV, A. N. (1981). Asymptotic properties of the distribution of an infinite quadratic form of Gaussian random variables. In Limit Theorems for Stochastic Processes and Statistical Conclusions, Work Collection, Tashkent 144-160. [Russian]. · Zbl 0569.60008
[111] NAIMARK, M. A. (1969). Linear Differential Operators. Second edition, Nauka, Moscow [Russian]. English transl. of the first edition: Linear Differential Operators. Part I. F. Ungar Publ. Co. XIII, New York, 1967. Part II. F. Ungar Publ. Co. XV, New York, 1968. · Zbl 0219.34001
[112] NAZAROV, A. I. (2003). On the sharp constant in the small ball asymptotics of some Gaussian processes under \(L_2\)-norm. Journal of Mathematical Sciences 117 4185-4210. · Zbl 1046.60035
[113] NAZAROV, A. I. (2004). Logarithmic asymptotics of small deviations for some Gaussian processes in the \(L_2\)-norm with respect to a self-similar measure. Zapiski Nauchnykh Seminarov POMI 311 190-213. [Russian]. English transl.: Journal of Mathematical Sciences, 133(3):1314-1327, 2006. · Zbl 1076.60030
[114] NAZAROV, A. I. (2009). Exact \(L_2\)-small ball asymptotics of Gaussian processes and the spectrum of boundary-value problems. Journal of Theoretical Probability 22 640-665. · Zbl 1187.60025
[115] NAZAROV, A. I. (2009). On a set of transformations of Gaussian random functions. Teoriya Veroyatnostei i ee Primeneniya 54 209-225. [Russian]. English transl.: Theory of Probability & Its Applications, 54(2):203-216, 2010. · Zbl 1214.60011
[116] NAZAROV, A. I. (2009). Log-level comparison principle for small ball probabilities. Statistics & Probability Letters 79 481-486. · Zbl 1166.60310
[117] NAZAROV, A. I. (2020). Some lemmata on the perturbation of the spectrum. Russian Journal of Mathematical Physics 27 378-381. · Zbl 1507.47031
[118] NAZAROV, A. I. (2021). Spectral asymptotics for a class of integro-differential equations arising in the theory of fractional Gaussian processes. Communications in Contemporary Mathematics 23 2050049. · Zbl 1469.45008
[119] NAZAROV, A. I. and NAZAROV, F. L. (2004). On Some Property of Convex Functions and an Inequality for the Vandermonde Determinants. Journal of Mathematical Sciences 120 1122-1124.
[120] NAZAROV, A. I. and NIKITIN, Y. Y. (2004). Exact \(L_2\)-small ball behavior of integrated Gaussian processes and spectral asymptotics of boundary value problems. Probability Theory and Related Fields 129 469-494. · Zbl 1051.60041
[121] NAZAROV, A. I. and NIKITIN, Y. Y. (2004). Logarithmic \(L_2\)-small ball asymptotics for some fractional Gaussian processes. Teoriya Veroyatnostei i ee Primeneniya 49 695-711. [Russian]. English transl.: Theory of Probability & Its Applications, 49(4):645-658, 2005. · Zbl 1107.60014
[122] NAZAROV, A. I. and NIKITIN, Y. Y. (2018). On small deviation asymptotics in \(L_2\) of some mixed Gaussian processes. Mathematics 6 55. · Zbl 1391.60070
[123] NAZAROV, A. I. and NIKITIN, Y. Y. (2021). Gaussian processes centered at their online average, and applications. Statistics & Probability Letters 170 109013. · Zbl 1457.60054
[124] NAZAROV, A. I. and NIKITIN, Y. Y. (2022). Spectral equivalence of Gaussian random functions: operator approach. Bernoulli 28 1448-1460. · Zbl 1502.60047
[125] NAZAROV, A. I. and PETROVA, Y. P. (2015). The small ball asymptotics in Hilbert Norm for the Kac-Kiefer-Wolfowitz processes. Teoriya Veroyatnostei i ee Primeneniya 60 482-505. [Russian]. English transl.: Theory of Probability & Its Applications, 60(3):460-480, 2016. · Zbl 1347.60038
[126] NAZAROV, A. I. and PETROVA, Y. P. (2023). \( L_2\)-small ball asymptotics for some demeaned Gaussian processes. Technical Report, in preparation. · Zbl 1517.60041
[127] NAZAROV, A. I. and PUSEV, R. S. (2009). Exact small ball asymptotics in weighted \(L_2\)-norm for some Gaussian processes. Journal of Mathematical Sciences 163 409-469. · Zbl 1288.60045
[128] NAZAROV, A. I. and PUSEV, R. S. (2013). Comparison theorems for the small ball probabilities of the Green Gaussian processes in weighted \(L_2\)-norms. Algebra i Analiz 25 131-146. [Russian]. English transl.: St. Petersburg Mathematical Journal, 25(3):455-466, 2014. · Zbl 1301.60045
[129] NAZAROV, A. I. and SHEIPAK, I. A. (2012). Degenerate self-similar measures, spectral asymptotics and small deviations of Gaussian processes. Bulletin of the London Mathematical Society 44 12-24. · Zbl 1244.60040
[130] NIKITIN, Y. Y. and KHARINSKI, P. A. (2004). Sharp Small Deviation Asymptotics in the \(L_2\)-norm for a Class of Gaussian Processes. Zapiski Nauchnykh Seminarov POMI 311 214-221. [Russian]. English transl.: Journal of Mathematical Sciences, 133(3):1328-1332, 2006. · Zbl 1079.60035
[131] NIKITIN, Y. Y. and ORSINGHER, E. (2004). Sharp small ball asymptotics for Slepian and Watson processes in Hilbert norm. Zapiski Nauchnykh Seminarov POMI 320 120-128. [Russian]. English transl.: Journal of Mathematical Sciences, 137(1):4555-4560, 2006. · Zbl 1084.60023
[132] NIKITIN, Y. Y. and PUSEV, R. S. (2012). Exact small deviation asymptotics for some Brownian functionals. Teoriya Veroyatnostei i ee Primeneniya 57 98-123. [Russian]. English transl.: Theory of Probability & Its Applications, 57(1):60-81, 2013. · Zbl 1278.60072
[133] PAL’TSEV, B. V. (1974). The asymptotics of the spectrum and eigenfunctions of convolution operators on a finite interval with a kernel with a homogeneous Fourier transform. Doklady Akademii Nauk SSSR 218 28-31. [Russian]. · Zbl 0322.45009
[134] PAL’TSEV, B. V. (2003). Asymptotic behaviour of the spectra of integral convolution operators on a finite interval with homogeneous polar kernels. Izvestiya: Mathematics 67 695-779. · Zbl 1068.45002
[135] PAPAGEORGIOU, A. and WASILKOWSKI, G. W. (1990). On the average complexity of multivariate problems. Journal of Complexity 6 1-23. · Zbl 0723.68050
[136] PECCATI, G. and YOR, M. (2006). Identities in law between quadratic functionals of bivariate Gaussian processes, through Fubini theorems and symmetric projections. In Approximation and probability. Banach Center Publications 72 235-250. Polish Academy of Sciences, Institute of Mathematics. · Zbl 1116.60013
[137] PELTIER, R. F. and LEVY VÉHEL, J. (1995). Multifractional Brownian motion: definition and preliminary results. Technical Report, INRIA.
[138] PETROVA, Y. P. (2017). Exact \(L_2\)-small ball asymptotics for some Durbin processes. Zapiski Nauchnykh Seminarov POMI 466 211-233. [Russian]. English transl.: Journal of Mathematical Sciences, 244(5):842-857, 2020. · Zbl 1448.62129
[139] PETROVA, Y. P. (2017). Spectral asymptotics for problems with integral constraints. Mathematical Notes 102 369-377. · Zbl 1383.34101
[140] PETROVA, Y. P. (2021). \( L_2\)-small ball asymptotics for a family of finite-dimensional perturbations of Gaussian functions. Zapiski Nauchnykh Seminarov POMI, Ya.Yu. Nikitin’s memorial volume 501 236-258. [Russian].
[141] PUSEV, R. S. (2008). Small deviations for Matérn random fields and processes in the Hilbert norm. Doklady Mathematics 78 778-780. · Zbl 1193.60037
[142] PUSEV, R. S. (2010). Asymptotics of small deviations of the Bogoliubov processes with respect to a quadratic norm. Theoretical and Mathematical Physics 165 1348-1357. · Zbl 1252.82019
[143] PUSEV, R. S. (2010). Small Deviations Asymptotics for Matérn Processes and Fields under Weighted Quadratic Norm. Teoriya Veroyatnostei i ee Primeneniya 55 187-195. [Russian]. English transl.:Theory of Probability & Its Applications, 55(1):164-172, 2011. · Zbl 1215.60027
[144] PYCKE, J. R. (2001). Une généralisation du développement de Karhunen-Loève du pont brownien. Comptes Rendus de l’Académie des Sciences-Series I-Mathematics 333 685-688. [French]. · Zbl 0995.60038
[145] PYCKE, J. R. (2003). Un lien entre le développement de Karhunen-Loève de certains processus gaussiens et le laplacien dans des espaces de Riemann, PhD thesis, Paris 6 [French].
[146] PYCKE, J. R. (2003). Multivariate extensions of the Anderson-Darling process. Statistics & Probability Letters 63 387-399. · Zbl 1116.60329
[147] PYCKE, J. R. (2021). On Three Families of Karhunen-Loève Expansions Associated with Classical Orthogonal Polynomials. Results in Mathematics 76 1-27. · Zbl 1475.33004
[148] QIAN, H. (2003). Fractional Brownian motion and fractional Gaussian noise. In Processes with Long-Range Correlations. Lecture Notes in Physics 621 22-33. Springer.
[149] RAL’CHENKO, K. V. and SHEVCHENKO, G. M. (2009). Path properties of multifractal Brownian motion. Teoriya Ĭmovirnosteĭ ta Matematychna Statystyka 80 106-116. [Ukrainian]. English transl.: Theory of Probability and Mathematical Statistics, 80:119-130, 2010. · Zbl 1224.60080 · doi:10.1090/S0094-9000-2010-00799-X
[150] RASMUSSEN, C. E. and WILLIAMS, C. K. I. (2006). Gaussian processes for machine learning 1. MIT Press, Cambridge. · Zbl 1177.68165
[151] RASTEGAEV, N. V. (2014). On spectral asymptotics of the Neumann problem for the Sturm-Liouville equation with self-similar weight of generalized Cantor type. Zapiski Nauchnykh Seminarov POMI 425 86-98. [Russian]. English transl.: Journal of Mathematical Sciences, 210(6):814-821, 2015. · Zbl 1334.34186
[152] RASTEGAEV, N. V. (2017). On spectral asymptotics of the tensor product of operators with almost regular marginal asymptotics. Algebra i Analiz 29 197-229. [Russian]. English transl.: St. Petersburg Mathematical Journal, 29(6):1007-1029, 2018. · Zbl 1435.47030
[153] RASTEGAEV, N. V. (2020). On the spectrum of the Sturm-Liouville problem with arithmetically self-similar weight. Technical Report, arXiv:2011.13064.
[154] RITTER, K., WASILKOWSKI, G. W. and WOŹNIAKOWSKI, H. (1995). Multivariate integration and approximation for random fields satisfying Sacks-Ylvisaker conditions. The Annals of Applied Probability 5 518-540. · Zbl 0872.62063
[155] ROZOVSKII, L. V. (2017). Small deviation probabilities of weighted sum of independent random variables with a common distribution having a power decrease in zero under minimal moment assumptions. Teoriya Veroyatnostei i ee Primeneniya 62 610-616. [Russian]. English transl.: Theory of Probability and its Applications, 62(3):491-495, 2018. · Zbl 1405.60043
[156] ROZOVSKY, L. V. (2018). On the Exact Asymptotics of Small Deviations of \(L_2\)-Norm for Some Gaussian Random Fields. Teoriya Veroyatnostei i ee Primeneniya 63 468-481. [Russian]. English transl.: Theory of Probability & Its Applications, 63(3):381-392, 2019. · Zbl 1442.60060
[157] ROZOVSKY, L. V. (2019). Small ball probabilities for certain Gaussian random fields. Journal of Theoretical Probability 32 934-949. · Zbl 1422.60077
[158] ROZOVSKY, L. V. (2021). On Small Deviation Asymptotics in the \(L_2\)-Norm for Certain Gaussian Processes. Mathematics 9 655.
[159] RYVKINA, J. (2015). Fractional Brownian motion with variable Hurst parameter: definition and properties. Journal of Theoretical Probability 28 866-891. · Zbl 1333.60077 · doi:10.1007/s10959-013-0502-3
[160] SENETA, E. (1976). Regularly varying functions. Lecture Notes in Mathematics 508. Springer-Verlag Berlin. · Zbl 0324.26002
[161] SHEIPAK, I. A. (2010). Singular points of a self-similar function of spectral order zero: self-similar Stieltjes string. Mathematical Notes 88 275-286. · Zbl 1242.28015
[162] SHEIPAK, I. A. (2015). Asymptotics of the spectrum of a differential operator with the weight generated by the Minkowski function. Mathematical Notes 97 289-294. · Zbl 1328.34089
[163] SHKALIKOV, A. A. (1982). Boundary-value problems for ordinary differential equations with a parameter in the boundary conditions. Functional analysis and its applications 16 324-326. · Zbl 0515.34019
[164] SHKALIKOV, A. A. (1983). Boundary-value problems for ordinary differential equations with a parameter in the boundary conditions. Trudy Seminara imeni I.G. Petrovskogo 9 190-229. [Russian]. English transl.: Journal of Soviet Mathematics, 33(6):1311-1342, 1986. · Zbl 0609.34019
[165] SOLOMYAK, M. Z. and VERBITSKY, E. (1995). On a Spectral Problem Related to Self-Similar Measures. Bulletin of the London Mathematical Society 27 242-248. · Zbl 0823.34071
[166] SYTAYA, G. N. (1974). On some asymptotic representations of the Gaussian measure in a Hilbert space. Theory of Stochastic Processes 2 93-104. [Russian]. · Zbl 0282.60022
[167] TAMARKIN, J. (1912). Sur quelques points de la theorie des equations differentielles lineaires ordinaires et sur la generalisation de la serie de Fourier. Rendiconti del Circolo Matematico di Palermo (1884-1940) 34 345-382. [French]. · JFM 43.0397.03
[168] TAMARKIN, J. (1928). Some general problems of the theory of ordinary linear differential equations and expansion of an arbitrary function in series of fundamental functions. Mathematische Zeitschrift 27 1-54. · JFM 53.0419.02
[169] UKAI, S. (1971). Asymptotic Distribution of Eigenvalues of the Kernel in the Kirkwood-Riseman Integral Equation. Journal of Mathematical Physics 12 83-92. · Zbl 0207.11401
[170] VAN DER VAART, A. and VAN ZANTEN, J. H. (2008). Rates of contraction of posterior distributions based on Gaussian process priors. The Annals of Statistics 36 1435-1463. · Zbl 1141.60018
[171] VAN DER VAART, A. and WELLNER, J. A. (1986). Weak convergence and empirical processes with applications to statistics. Springer Series in Statistics. NY, Springer. · Zbl 0862.60002
[172] VLADIMIROV, A. A. (2015). Oscillation method in the spectral problem for a fourth order differential operator with a self-similar weight. Algebra i Analiz 27 83-95. [Russian]. English transl.: St. Petersburg Mathematical Journal, 27(2):237-244, 2016. · Zbl 1343.34193
[173] VLADIMIROV, A. A. (2019). On a class of singular Sturm-Liouville problems. Transactions of the Moscow Mathematical Society 80 211-219. · Zbl 1441.34043
[174] VLADIMIROV, A. A. and SHEIPAK, I. A. (2006). Indefinite Sturm-Liouville problem for some classes of self-similar singular weights. Proceedings of the Steklov Institute of Mathematics 255 82-91. · Zbl 1351.34023
[175] VLADIMIROV, A. A. and SHEIPAK, I. A. (2006). Self-similar functions in \(L_2\) and the Sturm-Liouville problem with a singular indefinite weight. Sbornik: Mathematics 197 13-30. · Zbl 1177.34039
[176] VLADIMIROV, A. A. and SHEIPAK, I. A. (2010). Asymptotics of the eigenvalues of the Sturm-Liouville problem with discrete self-similar weight. Mathematical Notes 88 637-646. · Zbl 1235.34228 · doi:10.1134/S0001434610110039
[177] VLADIMIROV, A. A. and SHEIPAK, I. A. (2012). Asymptotics of eigenvalues in a problem of high even order with discrete self-similar weight. Algebra i Analiz 24 104-119. [Russian]. English transl.: St. Petersburg Mathematical Journal, 24(2):263-273, 2013. · Zbl 1280.34088 · doi:10.1090/S1061-0022-2013-01237-4
[178] VLADIMIROV, A. A. and SHEIPAK, I. A. (2013). On the Neumann problem for the Sturm-Liouville equation with Cantor-type self-similar weight. Functional Analysis and Its Applications 47 261-270. · Zbl 1310.34038
[179] WEYL, H. (1912). Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen. Mathematische Annalen 71 441-479. [German]. · JFM 43.0436.01
[180] WIDOM, H. (1964). Asymptotic behavior of the eigenvalues of certain integral equations. II. Archive for Rational Mechanics and Analysis 17 215-229. · Zbl 0183.11701
[181] ZOLOTAREV, V. M. (1984). Asymptotic behavior of the Gaussian measure in \(l_2\). Problemy Ustoichivosti Stokhasticheskikh Modelei - Trudy Seminara, Moscow 54-58. [Russian]. English transl.: Journal of Soviet Mathematics, 24:2330-2334, 1986.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.