×

On spectral asymptotics of the tensor product of operators with almost regular marginal asymptotics. (English. Russian original) Zbl 1435.47030

St. Petersbg. Math. J. 29, No. 6, 1007-1029 (2018); translation from Algebra Anal. 29, No. 6, 197-229 (2017).
Summary: The spectral asymptotics of a tensor product of compact operators in Hilbert space with known marginal asymptotics is studied. The methods of A. Karol’ et al. [Trans. Am. Math. Soc. 360, No. 3, 1443–1474 (2008; Zbl 1136.60024)] are generalized to operators with almost regular marginal asymptotics. In many (but not all) cases it is shown that the tensor product in question also has almost regular asymptotics. The results are then applied to the theory of small ball probabilities of Gaussian random fields.

MSC:

47A80 Tensor products of linear operators
47B02 Operators on Hilbert spaces (general)
60G15 Gaussian processes

Citations:

Zbl 1136.60024

References:

[1] GrLuPa S. Graf, H. Luschgy, and G. Pag\`es, Functional quantization and small ball probabilities for Gaussian processes, J. Theoret. Probab. 16 (2003), no. 4, 1047-1062. · Zbl 1038.60032
[2] LuPa H. Luschgy and G. Pag\`es, Sharp asymptotics of the functional quantization problem for Gaussian processes, Ann. Probab. 32 (2004), no. 2, 1574-1599. · Zbl 1049.60029
[3] PaWa A. Papageorgiou and G. W. Wasilkowski, On the average complexity of multivariate problems, J. Complexity 6 (1990), no. 1, 1-23. · Zbl 0723.68050
[4] NazNikKar A. Karol, A. Nazarov, and Ya. Nikitin, Small ball probabilities for Gaussian random fields and tensor products of compact operators, Trans. Amer. Math. Soc. 360 (2008), no. 3, 1443-1474. · Zbl 1136.60024
[5] NazKar A. Karol and A. Nazarov, Small ball probabilities for smooth Gaussian fields and tensor products of compact operators, Math. Nachr. 287 (2014), no. 5-6, 595-609. · Zbl 1301.60044
[6] KL J. Kigami and M. L. Lapidus, Weyl‘s problem for the spectral distributions of Laplacians on p.c.f. self-similar fractals, Comm. Math. Phys. 158 (1991), no. 1, 93-125. · Zbl 0806.35130
[7] SV M. Solomyak and E. Verbitsky, On a spectral problem related to self-similar measures, Bull. London Math. Soc. 27 (1995), no. 3, 242-248. · Zbl 0823.34071
[8] Naz A. I. Nazarov, Logarithmic asymptotics of small deviations for some Gaussian processes in the \(L_2\)-norm respect to a self-similar measure, Zap. Nauchn. Sem. S.-Peterburg. Mat. Inst. Steklov. (POMI) 311 (2004), 190-213; English transl., J. Math. Sci. (N.Y.)  133 (2006), no. 3, 1314-1327. · Zbl 1076.60030
[9] Sytaya G. N. Sytaya, Certain asymptotic representations for a Gaussian measure in Hilbert space, Theory of Random Processed, No. 2, Naukova Dumka, Kiev, 1974, pp. 93-104. (Russian). · Zbl 0282.60022
[10] Lifsh M. A. Lifshits, Asymptotic behavior of small ball probabilities, Prob. Theory and Math. Stat., VSP/TEV, Vilnius, 1999, pp.  453-468. · Zbl 0994.60017
[11] LiShao W. V. Li and Q. M. Shao, Gaussian processes: inequalities, small ball probabilities and applications, Stochastic Processes: Theory and Methods, Handbook of Statistics, vol. 19, North-Holland, Amsterdam, 2001, pp. 533-597. · Zbl 0987.60053
[12] Site Small deviations for stochastic processes and related topics, Internet site, www.proba.jussieu.fr/ pageperso/smalldev/.
[13] Csaki E. Cs\`aki, On small values of the square integral of a multiparameter Wiener process, Statistics and Probability (Visegraid, 1982), Reidel, Dordrecht, 1984, pp. 19-26. · Zbl 0536.60069
[14] Li W. V. Li, Comparison results for the lower tail of Gaussian seminorms, J. Theor. Probab. 5 (1992), no. 1, 1-31. · Zbl 0743.60009
[15] Seneta E. Seneta, Regularly varying functions, Lecture Notes in Math., vol.  508, Springer-Verlag, Berlin, 1976. · Zbl 0324.26002
[16] VladSheip A. A. Vladimirov and I. A. She\i pak, On the Neumann problem for the Sturn-Liouville equation with cantor-type self-similar weight, Funktsional. Anal. i Prilozhen. 47 (2013), no. 4, 18-29; English transl., Funct. Anal. Appl.  47 (2013), no. 4, 261-270. · Zbl 1310.34038
[17] Vlad \bysame , An oscillation method in a problem on the spectrum of a fourth-order differential operator with self-similar weight, Algebra i Analiz 27 (2015), no. 2, 83-95; English transl., St. Petersburg Math. J.  27 (2016), no. 2, 237-244. \pagebreak · Zbl 1343.34193
[18] Rast N. B. Rastegaev, On spectral asymptotics of the Neumann problem for the Sturm-Liouville equation with self-similar weight of generalized Cantor type, Zap. Nauchn. Sem. S.-Peterburg. Mat. Inst. Steklov. (POMI) 425 (2014), 86-98; English transl., J. Math. Sci.  210 (2015), no. 6, 814-821. · Zbl 1334.34186
[19] DamanikGorodetskiSolomyak D. Damanik, A. Gorodetski, and B. Solomyak, Absolutely continuous convolutions of singular measures and an application to the square Fibonacci Hamiltonian, Duke Math. J. 164 (2015), no. 8, 1603-1640. · Zbl 1358.37117
[20] Oxtoby J. C. Oxtoby, Ergodic sets, Bull. Amer. Math. Soc. 58 (1952), no. 2, 116-136. · Zbl 0046.11504
[21] NazLog A. I. Nazarov, Log-level comparison principle for small ball probabilities, Statist. Probab. Lett. 79 (2009), no. 4, 481-486. · Zbl 1166.60310
[22] Zol1 V. M. Zolotarev, Gaussian measure asymptotic in \(l_2\) on a set of centered spheres with radii tending to zero, Proc. 12th Europ. Meeting of Statisticians, Varna, 1979, pp.254.
[23] Zol2 \bysame , Asymptotics of a Gaussian measure in \(l_2\), Stability Problems for Stochastic Models (Moscow, 1984), Vsesoyuz. Nauchno-Issled. Inst. Sistem. Issled., Moscow, 1984, pp. 54-58. (Russian)
[24] DudHof R. M. Dudley, J. Hoffmann-Jrgensen, and L. A. Shepp, On the lower tail of Gaussian seminorms, Ann. Probab. 7 (1979), no. 2, 319-342. · Zbl 0424.60041
[25] Ibrag I. A. Ibragimov, The probability of a Gaussian vector with values in a Hilbert space hitting a ball of small radius, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 85 (1979), 75-93; English transl., J. Soviet. Math.  20 (1982), no. 3, 2164-2175. · Zbl 0489.60043
[26] Lifsh1 M. A. Lifshits, On the lower tail probabilities of some random series, Ann. Probab. 25 (1997), no. 1, 424-442. · Zbl 0873.60012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.