×

On spectral asymptotics of the Neumann problem for the Sturm-Liouville equation with self-similar weight of generalized Cantor type. (English. Russian original) Zbl 1334.34186

J. Math. Sci., New York 210, No. 6, 814-821 (2015); translation from Zap. Nauchn. Semin. POMI 425, 86-98 (2014).
Summary: Spectral asymptotics of the weighted Neumann problem for the Sturm-Liouville equation is considered. The weight is assumed to be the distributional derivative of a self-similar generalized Cantor type function. The spectrum is shown to have a periodicity property for a wide class of Cantor type self-similar functions. A weaker “quasiperiodicity” property is established under certain mixed boundary-value conditions. This allows for a more precise description of the main term of the eigenvalue counting function asymptotics.

MSC:

34L20 Asymptotic distribution of eigenvalues, asymptotic theory of eigenfunctions for ordinary differential operators
34B09 Boundary eigenvalue problems for ordinary differential equations
34L05 General spectral theory of ordinary differential operators

References:

[1] M. Solomyak and E. Verbitsky, “On a spectral problem related to self-similar measures,” Bull. London Math. Soc., 27, No. 3, 242-248 (1995). · Zbl 0823.34071 · doi:10.1112/blms/27.3.242
[2] A. A. Vladimirov and I. A. Sheipak, “On the Neumann problem for the Sturm-Liouville equation with Cantor-type self-similar weight,” Funct. Anal. Its Appl., 47, No. 4, 261-270 (2013). · Zbl 1310.34038 · doi:10.1007/s10688-013-0033-9
[3] M. Sh. Birman and M. Z. Solomyak, Spectral Theory of Self-Adjoint Operators in Hilbert Space, [in Russian], 2th ed., Lan’ publishers (2010). · Zbl 0098.06002
[4] M. G. Krein, “Determination of the density of the symmetric inhomogeneous string by spectrum,” Dokl. Akad. Nauk SSSR, 76, No. 3, 345-348 (1951). · Zbl 0042.09502
[5] M. Sh. Birman and M. Z. Solomyak, “Asymptotic behavior of the spectrum of weakly polar integral operators,” Izv. Math. Nauk, 4, No. 5, 1151-1168 (1970). · Zbl 0261.47027 · doi:10.1070/IM1970v004n05ABEH000948
[6] V. V. Borzov, “On the quantitative characteristics of singular measures,” Problems Math. Phys., 4, 42-47 (1970). · Zbl 0226.28003
[7] T. Fujita, “A fractional dimention, self-similarity and a generalized diffusion operator,” in: Taniguchi Symp. PMMP, Katata (1985), pp. 83-90. · Zbl 0261.47027
[8] I. Hong and T. Uno, “Some consideration of asymptotic distribution of eigenvalues for the equation <Emphasis Type=”Italic“>d2 <Emphasis Type=”Italic“>u/dx2 + <Emphasis Type=”Italic“>λρ(<Emphasis Type=”Italic“>x)<Emphasis Type=”Italic“>u = 0,” Japan. J. Math., 29, 152-164 (1959). · Zbl 0098.06002
[9] H. P. McKean and D. B. Ray, “Spectral distribution of a differential operator,” Duke Math. J., 29, 281-292 (1962). · Zbl 0114.04902 · doi:10.1215/S0012-7094-62-02928-9
[10] J. Kigami amd M. L. Lapidus, “Weyls problem for the spectral distributions of Laplacians on p.c.f. self-similar fractals,” Comm. Math. Phys., 158, 93-125 (1991). · Zbl 0806.35130 · doi:10.1007/BF02097233
[11] A. I. Nazarov, “Logarithmic <Emphasis Type=”Italic“>L2-small ball asymptotics with respect to self-similar measure for some Gaussian processes,” J. Math. Sci., 133, No. 3, 1314-1327 (2006). · doi:10.1007/s10958-006-0041-x
[12] A. A. Vladimirov and I. A. Sheipak, “Self-similar functions in <Emphasis Type=”Italic“>L2[0<Emphasis Type=”Italic“>, 1] and the Sturm- Liouville problem with singular indefinite weight,” Mat. Sb., 197, No. 11, 1569-1586, (2006). · Zbl 1177.34039 · doi:10.1070/SM2006v197n11ABEH003813
[13] A. A. Vladimirov, “Method of oscillation and spectral problem for four-order differential operator with self-similar weight,” arXiv:1107.4791. · Zbl 1343.34193
[14] I. A. Sheipak, “On the construction and some properties of self-similar functions in the spaces <Emphasis Type=”Italic“>L <Emphasis Type=”Italic“>p[0<Emphasis Type=”Italic“>, 1],” Math. Notes, 81, No. 6, 827-839 (2007). · Zbl 1132.28006 · doi:10.1134/S0001434607050306
[15] J. E. Hutchinson, “Fractals and self similarity,” Indiana Univ. Math. J., 30, No. 5, 713-747 (1981). · Zbl 0598.28011 · doi:10.1512/iumj.1981.30.30055
[16] A. A. Vladimirov, “On the oscillation theory of the Sturm-Liouville problem with singular coefficients,” Comp. Math. Math. Physics, 49, No. 9, 1535-1546 (2009). · Zbl 1199.34136 · doi:10.1134/S0965542509090085
[17] A. I. Nazarov, “On a set of transformations of Gaussian random functions,” Theory Probab. Appl., 54, No. 2, 203-216 (2010). · Zbl 1214.60011 · doi:10.1137/S0040585X97984103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.