×

Minimal surfaces with symmetries. (English) Zbl 07825666

An immersed minimal surface in \(\mathbb{R}^n\), \(n\geq3\), is the image of a conformal harmonic immersion \(F:X\to\mathbb{R}^n\) from an open conformal surface \(X\). There has been much work on symmetries of specific minimal surfaces, but the author is interested in general existence results. Let \(X\) be a connected open Riemann surface and \(G\) be a finite group of holomorphic automorphisms of \(X\) and acting on \(\mathbb{R}^n\) by orthogonal transformations. The author identifies a necessary and sufficient condition for the existence of a \(G\)-equivariant conformal minimal immersion \(F:X\to\mathbb{R}^n\).
Let \(G_x=\{g\in G \, : \, gx=x\}\) be the stabiliser of a point \(x\in X\). The group \(G_x\) is a cyclic subgroup of \(G\), which is trivial for points in the complement of a closed discrete subset of \(X\). The author proves in Theorem 1.1 that if for every non-trivial \(G_x\) there is a 2-plane \(\Lambda_x\subset\mathbb{R}^n\) on which \(G_x\) acts effectively by rotations, then there exists a minimal immersion \(F:X\to\mathbb{R}^n\) such that \[ \forall\,x\in X,\,g\in G: \quad F(gx) = gF(x) \] and the image \(F(X)\) is not contained in any affine hyperplane of \(\mathbb{R}^n\).
The author shows (Remark 1.2) that the conditions on stabilisers in Theorem 1.1 are necessary. The proof of Theorem 1.1 gives several additions concerning approximation, interpolation, and the control of the flux. (Theorem 5.1 should be compared with the results in the non-equivariant case, e.g., Theorems 3.6.1 and 3.6.2 of [A. Alarcón et al., Minimal surfaces from a complex analytic viewpoint. Cham: Springer (2021; Zbl 1520.53001)].) In particular, the map \(F\) in Theorem 1.1 can be chosen to be the real part of a \(G\)-equivariant null holomorphic immersion \(X\to\mathbb{C}^n\) (Theorem 5.3).
If \(H\) is the normal subgroup of \(G\) consisting of all elements \(g\in G\) which act trivially on \(\mathbb{R}^n\), then \(G/H\) is a symmetry group of the minimal surface \(F(X)\) in Theorem 1.1. The author derives some corollaries and states many problems concerning, among other things, the construction of complete \(G\)-equivariant minimal surfaces of finite total curvature and finding examples of minimal immersions with given groups of symmetries.
Finally, the author also provides an analogue of Theorem 1.1 for an infinite discrete group \(G\) acting on \(\mathbb{R}^n\) by rigid transformations and acting on a Riemann surface \(X\) properly discontinuously by holomorphic automorphisms such that the quotient surface \(X/G\) is non-compact. This case is only relevant if \(X\) has genus at most one.

MSC:

53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature
53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)
32E30 Holomorphic, polynomial and rational approximation, and interpolation in several complex variables; Runge pairs
32H02 Holomorphic mappings, (holomorphic) embeddings and related questions in several complex variables

Citations:

Zbl 1520.53001

References:

[1] A.Alarcón, B.Drinovec Drnovšek, F.Forstnerič, and F. J.López, Every bordered Riemann surface is a complete conformal minimal surface bounded by Jordan curves, Proc. Lond. Math. Soc. (3)111 (2015), no. 4, 851-886. · Zbl 1344.53008
[2] A.Alarcón and F.Forstnerič, Null curves and directed immersions of open Riemann surfaces, Invent. Math.196 (2014), no. 3, 733-771. · Zbl 1297.32009
[3] A.Alarcón, F.Forstnerič, and F.Lárusson, Holomorphic Legendrian curves in \(\mathbb{CP}^3\) and superminimal surfaces in \(\mathbb{S}^4\), Geom. Topol.25 (2021), no. 7, 3507-3553. · Zbl 1487.32055
[4] A.Alarcón, F.Forstnerič, and F.López, New complex analytic methods in the study of non‐orientable minimal surfaces in \(\mathbb{R}^n\), Mem. Amer. Math. Soc.264 (2020), no. 1283, iv, 77p. · Zbl 1508.53003
[5] A.Alarcón, F.Forstnerič, and F. J.López, Minimal surfaces from a complex analytic viewpoint, Springer Monographs in Mathematics, Springer, Cham, 2021. · Zbl 1520.53001
[6] A.Alarcón and F.Lárusson, Regular immersions directed by algebraically elliptic cones, arXiv e‐prints, 2312.02795, https://arxiv.org/abs/2312.027952023.
[7] A.Alarcón and F. J.López, Minimal surfaces in \(\mathbb{R}^3\) properly projecting into \(\mathbb{R}^2\), J. Differential Geom.90 (2012), no. 3, 351-381. · Zbl 1252.53005
[8] A.Alarcón and F. J.López, Approximation theory for nonorientable minimal surfaces and applications, Geom. Topol.19 (2015), no. 2, 1015-1062. · Zbl 1314.49026
[9] A.Alarcón and F. J.López, Algebraic approximation and the Mittag‐Leffler theorem for minimal surfaces, Anal. PDE15 (2022), no. 3, 859-890. · Zbl 1518.30006
[10] J. L. M.Barbosa and A. G.Colares, Minimal surfaces in \({\bf R}{^3}\), Lecture Notes in Mathematics, vol. 1195, Springer, Berlin, 1986. Translated from the Portuguese. · Zbl 0609.53001
[11] E.Bishop, Subalgebras of functions on a Riemann surface, Pacific J. Math.8 (1958), 29-50. · Zbl 0083.06201
[12] S. S.Chern and R.Osserman, Complete minimal surfaces in Euclidean \(n\)‐space, J. Anal. Math.19 (1967), 15-34. · Zbl 0172.22802
[13] H. I.Choi, W. H. I.Meeks, and B.White, A rigidity theorem for properly embedded minimal surfaces in \(R^3\), J. Differential Geom.32 (1990), no. 1, 65-76. · Zbl 0704.53008
[14] J. P.D’Angelo, Rational sphere maps, Prog. Math., vol. 341, Birkhäuser, Cham, 2021. · Zbl 1485.32001
[15] J. P.D’Angelo and M.Xiao, Symmetries in CR complexity theory, Adv. Math.313 (2017), 590-627. · Zbl 1375.32034
[16] J. E.Fornæss, F.Forstnerič, and E.Wold, Holomorphic approximation: the legacy of Weierstrass, Runge, Oka‐Weil, and Mergelyan, Advancements in complex analysis. From theory to practice, Springer, Cham, 2020, pp. 133-192. · Zbl 1483.32020
[17] F.Forstnerič, The Oka principle for multivalued sections of ramified mappings, Forum Math.15 (2003), no. 2, 309-328. · Zbl 1023.32007
[18] F.Forstnerič, Stein manifolds and holomorphic mappings (The homotopy principle in complex analysis), 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, vol. 56, Springer, Cham, 2017. · Zbl 1382.32001
[19] F.Forstnerič, The Calabi‐Yau property of superminimal surfaces in self‐dual Einstein four‐manifolds, J. Geom. Anal.31 (2021), no. 5, 4754-4780. · Zbl 1466.53072
[20] F.Forstnerič, Mergelyan approximation theorem for holomorphic Legendrian curves, Anal. PDE15 (2022), no. 4, 983-1010. · Zbl 1502.53122
[21] F.Forstnerič, Proper superminimal surfaces of given conformal types in the hyperbolic four‐space, Ann. Fac. Sci. Toulouse, Math. (6)32 (2023), no. 1, 145-172. · Zbl 1526.53059
[22] K.Fritsch and P.Heinzner, Equivariant embeddings of strongly pseudoconvex Cauchy‐Riemann manifolds, Manuscripta Math.168 (2022), no. 1‐2, 137-163. · Zbl 1503.32024
[23] L.Fuchs, On a class of functions of more variables which arise by inversion of integrals of solutions to linear differential equations with rational coefficients, Gött. Nachr.1880 (1880), 170-176. · JFM 12.0241.01
[24] E.Goursat, Étude des surfaces qui admettent tous les plans de symétrie d’un polyèdre régulier, Ann. Sci. Éc. Norm. Supér. (3)4 (1887), 159-200. · JFM 19.0781.03
[25] H.Grauert, Approximationssätze für holomorphe Funktionen mit Werten in komplexen Rämen, Math. Ann.133 (1957), 139-159. · Zbl 0080.29201
[26] L.Greenberg, Conformal transformations of Riemann surfaces, Amer. J. Math.82 (1960), 749-760. · Zbl 0102.06703
[27] L.Greenberg, Maximal groups and signatures, Discontinuous groups and Riemann surfaces. Proceedings of the 1973 conference at the University of Maryland, Ann. Math. Stud., vol. 79, Princeton University Press, Princeton, NJ, 1974, pp. 207-226. · Zbl 0295.20053
[28] R. C.Gunning and R.Narasimhan, Immersion of open Riemann surfaces, Math. Ann.174 (1967), 103-108. · Zbl 0179.11402
[29] P.Heinzner, Linear äquivariante Einbettungen Steinscher Räume, (Linearly equivariant imbeddings of Stein spaces), Math. Ann.280 (1988), no. 1, 147-160. · Zbl 0617.32022
[30] P.Heinzner, Kompakte Transformationsgruppen Steinscher Räume, (On compact transformation groups of Stein spaces), Math. Ann.285 (1989), no. 1, 13-28. · Zbl 0679.32030
[31] P.Heinzner, Geometric invariant theory on Stein spaces, Math. Ann.289 (1991), no. 4, 631-662. · Zbl 0728.32010
[32] P.Heinzner and A.Huckleberry, Invariant plurisubharmonic exhaustions and retractions, Manuscripta Math.83 (1994), no. 1, 19-29. · Zbl 0842.32010
[33] A.Huber, On subharmonic functions and differential geometry in the large, Comment. Math. Helv.32 (1957), 13-72. · Zbl 0080.15001
[34] A.Hurwitz, On Riemann surfaces with monogenic transformations into themselves, Math. Ann.41 (1893), 403-442. · JFM 24.0380.02
[35] G. A.Jones, A short proof of Greenberg’s theorem, arXiv e‐prints, https://arxiv.org/abs/1908.066752019.
[36] L. P.Jorge and W. H.MeeksIII, The topology of complete minimal surfaces of finite total Gaussian curvature, Topology22 (1983), no. 2, 203-221. · Zbl 0517.53008
[37] F.Klein, On the seventh order transformation of elliptic functions, Math. Ann.14 (1879), 428-471. · JFM 11.0297.01
[38] F.Kutzschebauch, F.Lárusson, and G. W.Schwarz, Gromov’s Oka principle for equivariant maps, J. Geom. Anal.31 (2021), no. 6, 6102-6127. · Zbl 1486.32007
[39] F.Kutzschebauch, F.Lárusson, and G. W.Schwarz, Equivariant Oka theory: survey of recent progress, Complex Anal. Synerg.8 (2022), no. 3, 13. Id/No 15. · Zbl 1521.32020
[40] A. M.Macbeath, On a theorem of Hurwitz, Proc. Glasg. Math. Assoc.5 (1961), 90-96. · Zbl 0134.16603
[41] A. M.Macbeath, On a curve of genus 7, Proc. Lond. Math. Soc. (3)15 (1965), 527-542. · Zbl 0146.42705
[42] B.Maskit, The conformal group of a plane domain, Amer. J. Math.90 (1968), 718-722. · Zbl 0172.09802
[43] W. H.MeeksIII and J.Pérez, The Riemann minimal examples, The legacy of Bernhard Riemann after one hundred and fifty years, Vol. II, Adv. Lect. Math. (ALM), vol. 35, Int. Press, Somerville, MA, 2016, pp. 417-457. · Zbl 1359.53010
[44] C. D.Minda, Fixed points of analytic self‐mappings of Riemann surfaces, Manuscripta Math.27 (1979), 391-399. · Zbl 0405.30035
[45] R.Miranda, Algebraic curves and Riemann surfaces, Grad. Stud. Math. AMS, vol. 5, American Mathematical Society, Providence, RI, 1995. · Zbl 0820.14022
[46] M. J.Moore, Fixed points of automorphisms of compact Riemann surfaces, Canad. J. Math.22 (1970), 922-932. · Zbl 0218.30021
[47] R.Osserman, A survey of minimal surfaces, 2nd ed., Dover Publications, Inc., New York, 1986.
[48] H.Poincaré, The theory of Fuchsian groups, Acta Math.1 (1882), 1-62. · JFM 14.0338.01
[49] E. A.Poletsky, Stein neighborhoods of graphs of holomorphic mappings, J. Reine Angew. Math.684 (2013), 187-198. · Zbl 1282.32007
[50] W.Rossman, Minimal surfaces in \(\mathbb{R}^3\) with dihedral symmetry, Tôhoku Math. J. (2)47 (1995), no. 1, 31-54. · Zbl 0834.53013
[51] Y. T.Siu, Every Stein subvariety admits a Stein neighborhood, Invent. Math.38 (1976/77), no. 1, 89-100. · Zbl 0343.32014
[52] A.Small, Duality for a class of minimal surfaces in \(\mathbb{R}^{n+1} \), Tôhoku Math. J. (2)51 (1999), no. 4, 585-601. · Zbl 0981.53009
[53] T.tomDieck, Transformation groups, De Gruyter Stud. Math., vol. 8, De Gruyter, Berlin, 1987. · Zbl 0611.57002
[54] Y.Xu, Symmetric minimal surfaces in \(\mathbb{R}^3\), Pac. J. Math.171 (1995), no. 1, 275-296. · Zbl 0865.53008
[55] K.Yang, Complete minimal surfaces of finite total curvature, Mathematics and its applications, vol. 294, Kluwer Academic Publishers Group, Dordrecht, 1994. · Zbl 0813.53003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.