×

Algebraic approximation and the Mittag-Leffler theorem for minimal surfaces. (English) Zbl 1518.30006

In the present paper, the authors prove Runge’s theorem (Theorem 1.2, a special case of Theorem 6.1) for complete minimal surfaces with finite total curvature, which is an analogue of the Behnke-Stein and Royden theorem on approximation and interpolation for functions on compact Riemann surfaces.
Theorem 1.2. Let \(\Sigma\) be a compact Riemann surface and \(\emptyset \ne E \subset \Sigma\) be a finite subset. Also let \(K \subset \Sigma\setminus E\) be a smoothly bounded Runge compact domain and let \(E_0\) and \(\Lambda\) be a pair of disjoint (possibly empty) finite sets in the interior of \(K.\) If \(X: K \setminus E_0 \rightarrow \mathbb R^n\), \(n \geq 3\), is a complete conformal minimal immersion with finite total curvature, then for any \(\varepsilon > 0\) and any integer \(r \geq 0\) there is a conformal minimal immersion \(Y : \Sigma \setminus (E \cup E_0) \rightarrow \mathbb R^n\) satisfying the following conditions:
(i)
\(Y\) is complete and has finite total curvature.
(ii)
\(Y - X\) extends harmonically to \(K\) and \(|Y - X|< \varepsilon\) on \(K.\)
(iii)
\(Y - X\) vanishes at least to order \(r\) at every point of \(E_0 \cup \Lambda.\)

Theorem 1.2 has already been proved for \(n =3\) in the special case \(\Lambda = \emptyset\) by F. J. López [Trans. Am. Math. Soc. 366, No. 12, 6201–6227 (2014; Zbl 1304.53007)] and the case \(E_0 = \emptyset \) by A. Alarcón et al. [Calc. Var. Partial Differ. Equ. 58, No. 1, Paper No. 21, 20 p. (2019; Zbl 1407.53007)]. The methods in both these papers rely on the spinor representation formula for minimal surfaces in \(\mathbb R^3,\) while the proof of Theorem 1.2 uses sprays generated by the flows of complete vector fields on the null-quadric \(\{(z_1,\ldots, z_n) \in \mathbb C^n\setminus 0: \, \sum_{j=1}^n z_j^2 = 0 \},\) and can therefore be applied to dimensions \(n \geq 3.\)
As an application of Theorem 1.2, the authors also obtain an analogue of the Mittag-Leffler theorem for minimal surfaces (Theorem 1.3).
An interested reader may find more on this topic in the book [A. Alarcón et al., Minimal surfaces from a complex analytic viewpoint. Cham: Springer (2021; Zbl 1520.53001)].

MSC:

30D30 Meromorphic functions of one complex variable (general theory)
53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature
53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)
32E30 Holomorphic, polynomial and rational approximation, and interpolation in several complex variables; Runge pairs

References:

[1] 10.1007/s00209-015-1586-5 · Zbl 1360.53020 · doi:10.1007/s00209-015-1586-5
[2] 10.1007/BFb0077105 · Zbl 0609.53001 · doi:10.1007/BFb0077105
[3] 10.1007/BF01447838 · Zbl 0038.23502 · doi:10.1007/BF01447838
[4] 10.2140/pjm.1958.8.29 · Zbl 0083.06201 · doi:10.2140/pjm.1958.8.29
[5] 10.1007/BF02788707 · Zbl 0172.22802 · doi:10.1007/BF02788707
[6] 10.1007/978-1-4615-9972-2 · doi:10.1007/978-1-4615-9972-2
[7] ; Florack, Herta, Reguläre und meromorphe Funktionen auf nicht geschlossenen Riemannschen Flächen (1948) · Zbl 0037.05604
[8] 10.1007/978-3-030-40120-7_5 · Zbl 1483.32020 · doi:10.1007/978-3-030-40120-7_5
[9] 10.1007/978-3-319-61058-0 · Zbl 1382.32001 · doi:10.1007/978-3-319-61058-0
[10] 10.1007/BF02564570 · Zbl 0080.15001 · doi:10.1007/BF02564570
[11] 10.1007/BF01446812 · JFM 26.0119.03 · doi:10.1007/BF01446812
[12] 10.1016/0040-9383(83)90032-0 · Zbl 0517.53008 · doi:10.1016/0040-9383(83)90032-0
[13] 10.2307/1971325 · Zbl 0455.53004 · doi:10.2307/1971325
[14] 10.1007/s12220-012-9361-x · Zbl 1303.53017 · doi:10.1007/s12220-012-9361-x
[15] 10.1090/S0002-9947-2014-05890-X · Zbl 1304.53007 · doi:10.1090/S0002-9947-2014-05890-X
[16] ; Mergelyan, S. N., On the representation of functions by series of polynomials on closed sets, Dokl. Akad. Nauk SSSR (N.S.), 78, 405 (1951) · Zbl 0042.08205
[17] 10.1007/BF02418410 · JFM 16.0351.01 · doi:10.1007/BF02418410
[18] ; Osserman, Robert, A survey of minimal surfaces (1969) · Zbl 0209.52901
[19] 10.1007/BF02798051 · Zbl 0153.39801 · doi:10.1007/BF02798051
[20] 10.1007/BF02400417 · JFM 17.0378.03 · doi:10.1007/BF02400417
[21] ; Weierstrass, K., Zur Theorie der eindeutigen analytischen Functionen, Abh. Deutsch. Akad. Wiss. Berlin. Math.-Nat. Kl., 1876, 11 (1876) · JFM 10.0282.01
[22] 10.1007/978-94-017-1104-3 · doi:10.1007/978-94-017-1104-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.