×

Wave propagation for a discrete diffusive mosquito-borne epidemic model. (English) Zbl 1535.35031

Summary: This paper is concerned with the existence and nonexistence of traveling wave solutions for a discrete diffusive mosquito-borne epidemic model with general incidence rate and constant recruitment. It is observed that whether the traveling wave solutions exist or not depend on the so-called basic reproduction ratio \(R_0\) of the corresponding kinetic system and the critical wave speed \(c^\ast\). More precisely, when \(R_0 > 1\) and \(c \geq c^\ast\), the system admits a nontrivial traveling wave solution by constructing an invariant cone in a bounded domain with initial functions being defined on, and employing the method of upper and lower solution, Schauder’s fixed point theorem and a limiting approach. Moreover, the asymptotic behavior of traveling wave solutions at positive infinity is obtained by constructing a suitable Lyapunov functional. When \(0 < c < c^\ast\) or \(R_0 \leq 1\), the system has no nontrivial traveling wave solution by using a contradictory approach and two-sided Laplace transforms.

MSC:

35C07 Traveling wave solutions
35K57 Reaction-diffusion equations
39A12 Discrete version of topics in analysis
92D30 Epidemiology
Full Text: DOI

References:

[1] Bhatt, S.; Gething, PW; Brady, OJ, The global distribution and burden of dengue, Nature, 496, 504-507 (2013) · doi:10.1038/nature12060
[2] Capasso, V.; Serio, G., A generalization of the Kermack-McKendrick deterministic epidemic model, Math. Biosci., 42, 43-61 (1978) · Zbl 0398.92026 · doi:10.1016/0025-5564(78)90006-8
[3] Chaves, LSM; Fry, J.; Malik, A., Global consumption and international trade in deforestation-associated commodities could influence malaria risk, Nat. Commun., 11, 1258 (2020) · doi:10.1038/s41467-020-14954-1
[4] Chen, Y-Y; Guo, J-S; Hamel, F., Traveling waves for a lattice dynamical system arising in a diffusive endemic model, Nonlinearity, 30, 2334-2359 (2017) · Zbl 1373.34022 · doi:10.1088/1361-6544/aa6b0a
[5] Chow, S-N; Mallet-Paret, J.; Shen, W., Traveling waves in lattice dynamical systems, J. Differ. Equ., 149, 248-291 (1998) · Zbl 0911.34050 · doi:10.1006/jdeq.1998.3478
[6] Deng, D.; Zhang, DP, Traveling waves for a discrete diffusive SIR epidemic model with treatment, Nonlinear Anal. Real World Appl., 61 (2021) · Zbl 1478.92190 · doi:10.1016/j.nonrwa.2021.103325
[7] Denu, D.; Ngoma, S.; Salako, RB, Existence of traveling wave solutions of a deterministic vector-host epidemic model with direct transmission, J. Math. Anal. Appl., 487 (2020) · Zbl 1435.92069 · doi:10.1016/j.jmaa.2020.123995
[8] Erneux, T.; Nicolis, G., Propagating waves in discrete bistable reaction diffusion systems, Physica D, 67, 237-244 (1993) · Zbl 0787.92010 · doi:10.1016/0167-2789(93)90208-I
[9] Esteva, L.; Vargas, C., Analysis of a dengue disease transmission model, Math. Biosci., 150, 131-151 (1998) · Zbl 0930.92020 · doi:10.1016/S0025-5564(98)10003-2
[10] Fang, J.; Lai, X.; Wang, F-B, Spatial dynamics of a dengue transmission model in time-space periodic environment, J. Differ. Equ., 269, 149-175 (2020) · Zbl 1442.35470 · doi:10.1016/j.jde.2020.04.034
[11] Fu, S-C; Guo, J-S; Wu, C-C, Traveling wave solutions for a discrete diffusive epidemic model, J. Nonlinear Convex Anal., 17, 1739-1751 (2016) · Zbl 1353.39005
[12] Hu, C-B; Li, B., Spatial dynamics for lattice differential equations with a shifting habitat, J. Differ. Equ., 259, 1967-1989 (2015) · Zbl 1388.35202 · doi:10.1016/j.jde.2015.03.025
[13] Kapral, R., Discrete models for chemically reacting systems, J. Math. Chem., 6, 113-163 (1991) · doi:10.1007/BF01192578
[14] Lewis, M.; Renclawowicz, J.; Van den Driessche, P., Traveling waves and spread rates for a West Nile virus model, Bull. Math. Biol., 68, 3-23 (2006) · Zbl 1334.92414 · doi:10.1007/s11538-005-9018-z
[15] Lin, Z.; Zhu, H., Spatial spreading model and dynamics of West Nile virus in birds and mosquitoes with free boundary, J. Math. Biol., 75, 1381-1409 (2017) · Zbl 1373.35321 · doi:10.1007/s00285-017-1124-7
[16] Liu, T.; Zhang, G-B, Global stability of traveling waves for a spatially discrete diffusion system with time delay, Electron. Res. Arch., 29, 2599-2618 (2021) · Zbl 1472.39010 · doi:10.3934/era.2021003
[17] Lou, Y.; Liu, K.; He, D.; Gao, D.; Ruan, S., Modelling diapause in mosquito population growth, J. Math. Biol., 78, 2259-2288 (2019) · Zbl 1411.37070 · doi:10.1007/s00285-019-01343-6
[18] Pang, L-Y; Wu, S-L, Propagation dynamics for lattice differential equations in a time-periodic shifting habitat, Z. Angew. Math. Phys., 72, 93 (2021) · Zbl 1464.35054 · doi:10.1007/s00033-021-01522-w
[19] Ran, X.; Hu, L.; Nie, L-F; Teng, Z., Effects of stochastic perturbation and vaccinated age on a vector-borne epidemic model with saturation incidence rate, Appl. Math. Comput., 394, 125798 (2021) · Zbl 1488.92039
[20] San, X.; Wang, Z., Traveling waves for a two-group epidemic model with latent period in a patchy environment, J. Math. Anal. Appl., 475, 1502-1531 (2019) · Zbl 1415.92192 · doi:10.1016/j.jmaa.2019.03.029
[21] Su, T.; Zhang, G-B, Invasion traveling waves for a discrete diffusive ratio-dependent predator-prey model, Acta Math. Sci. Ser. B, 40, 1459-1476 (2020) · Zbl 1513.34065 · doi:10.1007/s10473-020-0517-7
[22] Van den Driessche, P.; Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180, 29-48 (2002) · Zbl 1015.92036 · doi:10.1016/S0025-5564(02)00108-6
[23] Wang, C.; Wang, J., Analysis of a malaria epidemic model with age structure and spatial diffusion, Z. Angew. Math. Phys., 72, 74 (2021) · Zbl 1464.35383 · doi:10.1007/s00033-021-01511-z
[24] Wang, J.; Wang, J., Analysis of a reaction-diffusion cholera model with distinct dispersal rates in the human population, J. Dyn. Differ. Equ., 33, 549-575 (2021) · Zbl 1458.35433 · doi:10.1007/s10884-019-09820-8
[25] Wang, K.; Zhao, H.; Wang, H., Traveling waves for a diffusive mosquito-borne epidemic model with general incidence, Z. Angew. Math. Phys., 73, 31 (2022) · Zbl 1481.35111 · doi:10.1007/s00033-021-01666-9
[26] Wang, W.; Zhao, X-Q, A nonlocal and time-delayed reaction-diffusion model of dengue transmission, SIAM J. Appl. Math., 71, 147-168 (2011) · Zbl 1228.35118 · doi:10.1137/090775890
[27] Wang, W.; Zhao, X-Q, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Syst., 11, 1652-1673 (2012) · Zbl 1259.35120 · doi:10.1137/120872942
[28] Wu, CC, Existence of traveling waves with the critical speed for a discrete diffusive epidemic model, J. Differ. Equ., 262, 272-282 (2017) · Zbl 1387.34094 · doi:10.1016/j.jde.2016.09.022
[29] Wu, R.; Zhao, X-Q, A reaction-diffusion model of vector-borne disease with periodic delays, J. Nonlinear Sci., 29, 29-64 (2019) · Zbl 1411.35170 · doi:10.1007/s00332-018-9475-9
[30] Yang, Z-X; Zhang, G-B, Stability of non-monotone traveling waves for a discrete diffusion equation with monostable convolution type nonlinearity, Sci China Math., 61, 1789-1806 (2018) · Zbl 1401.35192 · doi:10.1007/s11425-017-9175-2
[31] Yang,X.-X., Zhang,G.-B., Hao,Y.-C.: Existence and stability of traveling wavefronts for a discrete diffusion system with nonlocal delay effects. Discrete Contin. Dyn. Syst. Ser. B (2023) (in press). doi:10.3934/dcdsb.2023160 · Zbl 1533.35056
[32] Zhang, Q.; Wu, S-L, Wave propagation of a discrete SIR epidemic model with a saturated incidence rate, Int. J. Biomath., 12, 1950029 (2019) · Zbl 1415.92201 · doi:10.1142/S1793524519500293
[33] Zhang, R.; Liu, S-Q, Wave propagation for a discrete diffusive vaccination epidemic model with bilinear incidence, J. Appl. Anal. Comput., 13, 715-733 (2023)
[34] Zhang, R.; Wang, J-L; Liu, S-Q, Traveling wave solutions for a class of discrete diffusive SIR epidemic model, J. Nonlinear Sci., 31, 10 (2021) · Zbl 1462.35130 · doi:10.1007/s00332-020-09656-3
[35] Zhang, T., Minimal wave speed for a class of non-cooperative reaction-diffusion systems of three equations, J. Differ. Equ., 262, 4724-4770 (2017) · Zbl 1401.35194 · doi:10.1016/j.jde.2016.12.017
[36] Zhao, L.; Wang, Z-C; Ruan, S., Traveling wave solutions in a two-group SIR epidemic model with constant recruitment, J. Math. Biol., 1, 1-45 (2018)
[37] Zhao, X-Q, Basic reproduction ratios for periodic compartmental models with time delay, J. Dyn. Differ. Equ., 29, 67-82 (2017) · Zbl 1365.34145 · doi:10.1007/s10884-015-9425-2
[38] Zhou, J.; Song, L-Y; Wei, J-D, Mixed types of waves in a discrete diffusive epidemic model with nonlinear incidence and time delay, J. Differ. Equ., 268, 4491-4524 (2020) · Zbl 1440.34089 · doi:10.1016/j.jde.2019.10.034
[39] Zhou, J.; Xu, J.; Wei, J-D; Xu, H., Existence and non-existence of traveling wave solutions for a nonlocal dispersal SIR epidemic model with nonlinear incidence rate, Nonlinear Anal. RWA., 41, 204-231 (2018) · Zbl 1383.35232 · doi:10.1016/j.nonrwa.2017.10.016
[40] Zhou, J.; Yang, Y.; Hsu, C-H, Traveling waves of a discrete diffusive waterborne pathogen model with general incidence, Commun. Nonlinear Sci. Numer. Simul., 126, 107431 (2023) · Zbl 1523.34068 · doi:10.1016/j.cnsns.2023.107431
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.